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and Marie-France Sagot1,2*

Abstract

Background: Phylogenetic tree reconciliation is the approach of choice for investigating the coevolution of sets of
organisms such as hosts and parasites. It consists in a mapping between the parasite tree and the host tree using
event-based maximum parsimony. Given a cost model for the events, many optimal reconciliations are however
possible. Any further biological interpretation of themmust therefore take this into account, making the capacity to
enumerate all optimal solutions a crucial point. Only two algorithms currently exist that attempt such enumeration; in
one case not all possible solutions are produced while in the other not all cost vectors are currently handled. The
objective of this paper is two-fold. The first is to fill this gap, and the second is to test whether the number of solutions
generally observed can be an issue in terms of interpretation.

Results: We present a polynomial-delay algorithm for enumerating all optimal reconciliations. We show that in
general many solutions exist. We give an example where, for two pairs of host-parasite trees having each less than 41
leaves, the number of solutions is 5120, even when only time-feasible ones are kept. To facilitate their interpretation,
those solutions are also classified in terms of how many of each event they contain. The number of different classes of
solutions may thus be notably smaller than the number of solutions, yet they may remain high enough, in particular
for the cases where losses have cost 0. In fact, depending on the cost vector, both numbers of solutions and of classes
thereof may increase considerably. To further deal with this problem, we introduce and analyse a restricted version
where host switches are allowed to happen only between species that are within some fixed distance along the host
tree. This restriction allows us to reduce the number of time-feasible solutions while preserving the same optimal cost,
as well as to find time-feasible solutions with a cost close to the optimal in the cases where no time-feasible solution is
found.

Conclusions: We present EUCALYPT, a polynomial-delay algorithm for enumerating all optimal reconciliations which
is freely available at http://eucalypt.gforge.inria.fr/.

Keywords: Cophylogeny, Reconciliation, Enumeration algorithm, Polynomial delay, Host-parasite systems

Background
Phylogenetic tree reconciliation has been the approach of
choice for investigating the coevolution of sets of organ-
isms such as hosts and parasites [1-3]. Besides the increas-
ingly important role that reconciliation methods are likely
to play in the study of coevolution, they have the advan-
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tage of being applicable to different types of data. For
instance, they are extensively used for analysing the asso-
ciations between genes and species [4-6], and between
species and geological history [7]. The similarity between
all three classes of problems was pointed out by Page
already in 1994 [8] and further considered in [9,10]. More
recently, a unique generalised formal model appeared in
[11]. In this paper, we focus on the host/parasite asso-
ciations but we want to call attention to the fact that,
due to the similarity of the models, our algorithm can be
straightforwardly applied to the other problems as well.

© 2015 Donati et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
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Reconciliation is modelled as a tree mapping problem –
of the parasite tree onto the host one – with constraints.
During the mapping process, four types of events are
considered [1,12]. These are: cospeciation (this happens
when both host and parasite speciate), duplication (when
the parasite speciates but not the host, both new par-
asite species remaining associated with the host), loss
(when the host speciates but not the parasite, leading
to the loss of the parasite in one of the two new host
species), and host switch (when the parasite speciates, one
species remaining with its current host while the other
switches, that is jumps to another). In the context of gene-
species associations, this model is known as the DTL (for
“Duplication, Transfer, and Loss”) model for the reconcil-
iation problem and has been extensively studied (see, for
example, [4-6,13,14]).
In the reconciliation problem, we are given a host tree

H , a parasite tree P, and a mapping of the leaves of P
to the leaves of H which reflects current knowledge on
which existing parasites inhabit which hosts. By assign-
ing a cost to each of the four types of events, we can
obtain a parsimonious solution (or simply a reconcil-
iation) according to the DTL model which minimises
the total cost of the mapping. Additionally, if timing
information is available, i.e. if we happen to know the
order in which speciation events occurred in the host
phylogeny, then any proposed reconciliation must also
respect the temporal constraints imposed by the avail-
able timing information. In this case, the reconciliation
problem can easily be solved using dynamic program-
ming, in time polynomial in the size of the trees [15].
However, timing information may not be available or may
be insufficiently reliable to be used with enough confi-
dence. In such case, the reconciliation problem is NP-hard
[5,6,16]. A number of algorithms have been developed
that allow for solutions that are biologically unfeasible,
that is for solutions where some of the switches induce
a contradictory timing ordering of the internal vertices
of the host tree [13,14,17,18]. In this case, the algo-
rithms are able to generate optimal solutions in poly-
nomial time without guaranteeing the time feasibility
constraint.
This is the situation we address in this paper. We treat

the reconciliation problem in the absence of any timing
information, i.e. the two phylogenetic trees are provided
undated. In this context, there are two main issues that
must be taken into account in the reconciliation approach.
First, providing a single optimal solution is not a good
option as it can be biologically unfeasible (observe how-
ever that this is what the majority of the existing recon-
ciliation algorithms do). Second, given a cost model for
the events, an exponential number of optimal reconcil-
iations is possible. Thus, even when restricting to time-
feasible solutions, this number can remain huge. For these

reasons, the capacity to enumerate all optimal solutions
becomes a crucial point.
To the best of our knowledge, the reconciliation algo-

rithms that try to deal with more than one optimal solu-
tion are the following: CORE-PA [19], MOWGLI [18], JANE
4 [16], NOTUNG [14], and RANGER-DTL [20]. However,
MOWGLI assumes that the host and parasite trees are fully
dated and computes just the number of optimal reconcil-
iations without generating them. JANE 4 uses a heuristic
based on a genetic algorithm for finding one or a num-
ber of solutions (not all and not necessarily of optimal
cost). RANGER-DTL can handle both dated and undated
trees and can compute the total number of optimal rec-
onciliations. However, the currently available version of
RANGER-DTL outputs only one optimal reconciliation.
EUCALYPT and NOTUNG are the only publicly available
algorithms that claim to generate all optimal reconcilia-
tions. However for most instances, CORE-PA enumerates
only a proper subset of all optimal solutions (see the
Results and discussion Section). NOTUNG was designed
for a more general event model that includes duplications,
losses, transfers, and incomplete lineage sorting (ILS).
In particular, the DTL model is a special case when the
species tree is binary. However, the algorithm imposes
some restrictions on the cost values. Indeed, the cost of a
cospeciation is always assumed to be equal to 0 and the
cost of a loss positive.
We provide an algorithm that, given a cost model for

the events, efficiently generates all the optimal solutions
for the reconciliation problem. It is also possible for the
algorithm to generate only optimal reconciliations that
are time-feasible. EUCALYPT requires no assumption to
be made concerning the cost values: it thus allows neg-
ative ones while cospeciation and loss may have any
arbitrary cost. In addition, the algorithm can efficiently
handle distance-bounded host switches, i.e. cases where
the host switches are allowed to happen only between
species that are within some fixed distance along the host
tree. Observe that this is not an artificial requirement. The
significance of a host switch distance has already been
pointed out in several studies [21,22]. Indeed, if parasites
switched only between closely related hosts, this would
lead to a higher degree of congruence between the par-
asite and host trees. When this information is available,
it should thus be taken into account in the reconciliation
process. Moreover, it can happen that for some datasets
and cost vectors, there is no optimal time-feasible solu-
tion. One way to overcome this problem can be by varying
the length of the farthest allowed switch until at least one
time-feasible solution is obtained. On the contrary, in the
case where the number of optimal time-feasible reconcili-
ations is high, one can decrease their number by selecting
a subset of them. This can be done by decreasing the
value of the maximum allowed distance of a switch while
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maintaining the same optimal total cost. Finally, the com-
plexity of the bounded-switch problem remains open, and
it could be that this constraint makes the reconciliation
problem solvable in polynomial time, which in turn is of
both theoretical and practical interest.
We show that the algorithm we developed and describe

in this paper, EUCALYPT (for “EnUmerator of Coevolu-
tionary Associations in PoLYnomial-Time delay” with one
switch, of “P” before “LY”), loses no optimal solution, and
is able to list all of them in linear-time delay: the time
required for getting from one solution to the next one is
indeed O(m) for m the number of vertices in the para-
site tree, while finding the first solution requires O(n3m)

time for n the number of vertices in the host tree. The
space complexity for the whole enumeration process is
also O(n3m).
We applied EUCALYPT to a number of host-parasite

trees available in the literature, and to our own set of inter-
est. We show that in general many optimal solutions exist.
Indeed, as already noticed in other studies (see e.g. [20])
the number can sometimes be huge. We give an exam-
ple where, for two pairs of host-parasite trees having each
less than 41 leaves, the number of solutions is 5120, even
when only time-feasible ones are kept. Depending on the
cost vector, this may increase considerably (for the same
example, to 4080384). EUCALYPT indeed comes with a
procedure (in O(n3) time) for testing the time feasibility
of a solution. The possibility to calculate the number of
solutions without explicitly listing them all was also inte-
grated in EUCALYPT. This has the same complexity as to
enumerate a single solution. Finally, to facilitate interpret-
ing the results even when a huge number of solutions is
observed, the latter are classified in terms of the number of
each event (cospeciation, duplication, loss, or host switch)
that they contain. The number of different classes of solu-
tions that must be examined further is often considerably
smaller, but may remain high enough (for instance 275)
depending on the cost vector.

Implementation
Model
A rooted phylogenetic tree is a leaf-labelled tree that mod-
els the evolution of a set of taxa from their most recent
common ancestor (placed at the root). The internal ver-
tices of the tree correspond to the speciation events. The
tree is rooted so a direction is intrinsically assumed that
corresponds to the direction of evolutionary time. Hence-
forth, by a phylogenetic tree T , we thus mean a rooted
tree with labelled leaves and where the root has in-degree
0 and out-degree 2, the leaves have out-degree 0 and
in-degree 1 and every other vertex has in-degree 1 and
out-degree 2.
The model of host-parasite evolution we rely on in this

paper is the event-based one presented by Tofigh et al. [6],

and later further analysed by Bansal et al. [13]. Let H ,P
be the phylogenetic trees for the host and parasite species
respectively. We define φ as a function from the leaves
of P to the leaves of H that represents the association
between currently living host species and parasites. Such
association is an input of our algorithm, together with the
trees themselves. In this model, we allow each parasite to
be related to one and only one host, while a host can be
related to zero, one, or more than one parasite.
In studying the coevolution of hosts and parasites, the

following set of events are generally allowed to take place
(see Figure 1): (a) cospeciation: the host and parasite spe-
ciate concurrently, (b) duplication: the parasite speciates
independently from the host and both new species of par-
asites remain with the host, (c) loss: the host speciates but
the parasite does not, and (d) host switch: the parasite spe-
ciates but one of the new parasite species switches (jumps)
to another host.
A reconciliation is a function γ from the set of nodes of

P to the nodes ofH that extends the mapping of the leaves
φ. Besides this, γ must satisfy some logical constraints as
for example: (a) a node of P cannot bemapped in an ances-
tor of the mapping of its father; and (b) one of the two
children of an internal node v of P must be mapped in the
subtree of H rooted at γ (v), the image of v in H .
A reconciliation can be uniquely associated to a multi-

set of events from cospeciation, duplication and switches.
Indeed, for each node of the parasite tree, one can deter-
mine the event associated to that node by looking at
the mappings of its children. For instance, a node v is
associated with a cospeciation if its children are mapped
in different subtrees rooted at the two children of γ (v).
Finally, losses are identified by a multi-set containing all
the vertices h ∈ V (H) that are in the path from the image
of a vertex in V (P) and the image of one of its children. A

Figure 1 Recoverable events for a coevolutionary
reconstruction. Schematic representation of cospeciation,
duplication, host switch and loss events. The tube represents the host
phylogenetic tree while the dotted line the one of the parasite.
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detailed and formal description of the model can be found
in Additional file 1.
The triple S = 〈H ,P, γ 〉 is said to be a scenario or simply

a reconciliation. Given a vector 〈cc, cd, cs, cl〉 of real values
that correspond to the cost of each type of event, the opti-
mal reconciliations are the ones that minimise the total
cost.
Finally, some combinations of host switches can intro-

duce an incompatibility due to the temporal constraints
imposed by the host and parasite trees, as well as by the
reconciliation itself. Determining whether a reconciliation
is time-feasible can be done in polynomial time [14]. It is
common to refer to a time-feasible (unfeasible) solution as
acyclic (cyclic), and in this paper we will use these terms
interchangeably.
The All Most Parsimonious Reconciliation problem (All-

MPR problem) consists in generating all reconciliations
of minimum cost. Finally, we consider the problem when
the host switches are distance-bounded, i.e. there exists a
bound on the maximum distance k along the host tree to
which a parasite can jump.We call this the k-bounded-All-
MPR problem. Clearly this is a generalisation in the sense
that we trivially obtain the unbounded version by setting
k equal to the longest path in the host tree.
We describe next the algorithm EUCALYPT that solves

both problems in polynomial delay. As the set of opti-
mal reconciliations produced may contain both cyclic and
acyclic solutions, we also include an acyclicity test based
on [14], for selecting only the time-feasible reconcilia-
tions.

Algorithm
Finding one solution
In the same way as the algorithms which find one single
reconciliation (possibly cyclic) of minimum cost, that is,
which solve the so-called DTL problem [6,13,14], EUCA-
LYPT uses a dynamic programming approach to find
one or to enumerate all optimal reconciliations. In this
approach, each (p, h) cell of them by n dynamic program-
ming matrix, let us denote it by D, contains a single (real
or integer) number that represents the cost of an optimal
(sub-)reconciliation mapping vertex p in the parasite tree
to vertex h in the host tree. The matrix is filled following a
post-order traversal of P and H . Bansal et al. provided an
algorithm that finds the cost of one optimal reconciliation
in time and space O(nm) [13]. We adapted the algorithm
for solving themore general k-bounded-All-MPR problem.
More precisely, let k be the maximum allowed host switch
distance. Adding to the dynamic programming procedure
a test for checking the distance of a host switch, we obtain
an algorithm whose time complexity is O(nm2̇k). How-
ever, for a constant value of k, this complexity remains in
O(nm). Observe that if we do not require the k bound
on the distance of the switches, one could easily replace

the algorithm by the theoretically faster method of Bansal
et al.
Finding one optimal solution requires keeping trace of

a path in the matrix leading to the minimum cost. This
is easily done by keeping in each D(p, h) cell not only the
cost associated to it but a pair of pointers to one mapping
for the children p1, p2 of p having led to such cost.

Enumerating all optimal solutions
To enumerate all solutions, we need to keep more infor-
mation. This can be done using O(n3m) space instead
of O(nm). Consider a cell c = D(p, h) of the dynamic
programming matrix D. Besides the numerical value cor-
responding to the cost of an optimal solution obtained by
mapping p to h, the cell now also contains a list of pairs
of pointers, one to each of the mappings of the children
p1 and p2 of p having led to the cost of an optimal sub-
solution that mapped p to h. Clearly the size of such a
list is O(n2) in the worst case. The set of all pointers for
D naturally form a DAG-like structure that is driven by
the topology of the parasite tree. Figure 2 shows the infor-
mation contained in cell c = D(p, h) of the matrix (left
side). This may be also visualised in the form of a local
tree (right side of the same figure) with the parent vertex
c as the root which corresponds to the mapping of p to h
(denoted in the figure by p : h) and one child for each alter-
native solution leading to that mapping (rectangle vertices
in the figure). Each such alternative solution in turn cor-
responds to a pair of pointers, to two circle vertices which
represent, in each case, a different pair of mappings of the
children p1 and p2 of p which is equivalent in terms of
cost (and is optimal). The circle vertices thus correspond
to other cells of the matrix D which contain a similar local
tree. Notice that more than one sub-solution may refer
to a same mapping as indicated in Figure 3, thus lead-
ing to a DAG structure when the set of all solutions is
considered and representing a compact structure for con-
taining them all. Once built during the first pass over D,
this DAG is then visited in pre-order to iteratively extract
each such solution in turn. For more details concerning
both algorithms, see Additional file 1.

Complexity analysis
The space complexity of EUCALYPT is O(n3m). For each
of the mn steps of the dynamic programming procedure,
we create at most n2 objects. All the additional structures
used to iterate over this matrix have size O(n). To evalu-
ate the time complexity of the whole enumeration process,
we separate the time needed for filling matrix D, and the
time for traversing it in order to produce a single solution,
or to enumerate all of them. The number of steps needed
for filling the matrix the first time isO(n3m) because each
cell may contain, in the worst case, a list of n2 pairs of
pointers. Since the height of the DAG is bounded by 2m, it
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Figure 2 Local tree structure for a given cell of D. Schematic representation of the content of a cell in the dynamic programming matrix.
Suppose the cell is related to the association p : h and let p1, p2 be the two children of p. One single cell-root node is created to represent the
association p : h (the circular node in the picture). This association has a local minimum cost c that can be obtained in different ways, that is
choosing different associations for p1 and p2. Each equivalent alternative is represented by a node (squared in the picture). The number of
alternatives is variable. In this example, we have three alternatives: (i) p1 is mapped into hx and p2 is mapped into hy ; (ii) p1 is mapped into h and p2
is mapped into hw ; and, (iii) p1 and p2 are both mapped into hz . Each one of these alternatives, combined with the mapping of p into h give the
same local minimum cost c. Notice that, h, hw , hx , hy , and hz are distinct nodes of the host tree.

can be traversed using only a linear size support structure.
Moreover, at each iteration that leads to one solution, a
subtree of size 2m of the DAG is visited. In particular, each
time we are visiting a parent vertex, we need to add its
mapping to the current solution and then follow the DAG
looking for the mappings of its two children. An entire
solution (which is composed by m mappings) is complete
when at most 2 vertices (one parent and one sub-solution)

have been visited for each vertex of P. This guarantees
that once we produce the first solution, obtaining each one
of the others in turn requires only linear time and linear
space.
Finally, it is possible to enumerate only time-feasible

solutions. To this purpose we have implemented a time-
feasibility test defined in [14] which has a time complexity
of O(n2).

Figure 3Multiple sub-solutions. The tree structure allows us to save the information in an efficient way. Each sub-solution corresponds to a
subtree and there is no need to duplicate it each time it appears in a solution. In particular, only one node is created for each association and if two
different alternatives share this association, the respective (square) nodes will point exactly at the same (circular) node. In this example, the mapping
of p into h has the same alternatives (i), (ii) and (iii) as depicted in Figure 2. The association of p with h′ has local minimum cost of c′ and can be
obtained by two mappings of p1 and p2: (iv) p1 is mapped into h and p2 is mapped into hz ; and (v) p1 is mapped into hu and p2 is mapped into hv .
Notice that, h, h′ , hu , hv , hw , hx , hy , and hz are distinct nodes of the host tree.
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Results and discussion
Datasets
To test EUCALYPT, we selected 12 datasets from the lit-
erature. As we are mostly interested in host-parasite sys-
tems, the first 10 datasets concern such relations: EC -
Encyrtidae & Coccidae [23], GL - Gopher & Lice [24],
SC - Seabirds & Chewing Lice [25], RP - Rodents &
Pinworms [26], SCF - Smut Fungi & Caryophillaceus
plants [27], PLML - Pelican Lice ML [28] (the trees
are generated through a maximum likelihood approach),
PLMP - Pelican Lice MP [28] (the trees are generated
through a maximum parsimony approach), RH - Rodents
& Hantaviruses [29], PP - Primates & Pinworm [30], and
FD - Fishs and Dactylogyrus [31].
In addition, we used a dataset of our own which corre-

sponds to arthropod hosts and a bacterium genus, Wol-
bachia, living inside the cells of their hosts [32,33]. The
datasets were chosen to provide a variety in terms of
size of the host and parasite trees: those from the lit-
erature are relatively small (from 7 to 100 leaves), while
our own data provide an example of much bigger host
and parasite trees, each having 387 leaves. Moreover, we
were careful that the selected datasets cover, as much
as possible, a range of situations in terms of coevo-
lution and of the expected frequencies of each event.
Finally, since EUCALYPT can be applied to any type of
datasets compatible with the model, we also tested it
on a genes-species dataset from [17] that had previously
been used by [20]. The dataset has 3983 unrooted gene
trees.
To be able to run our algorithm on this dataset, we

rooted the trees using an approach similar to [20]: for each
possible rooted version of the unrooted gene tree, we con-
sider the optimal cost of the reconciliation and choose the
rooting that has minimum cost among all. In this paper,
we only show the results concerning 4 datasets: COG2085,
COG3715, COG4964, COG4965. The choice of these
datasets is motivated by the fact that they show different
behaviour, in particular as concerns the k-bounded-All-
MPR problem.
The datasets from the literature are given in Table 1,

together with the number of leaves in the host and parasite
trees.

Comparison with CORE-PA and NOTUNG

In Table 1, we compare EUCALYPT to CORE-PA and
NOTUNG for some cost vectors that commonly appear in
the literature.
As mentioned in the introduction, CORE-PA does not

always enumerate all solutions, as shown in Table 1. In
the Additional file 1, we give an explicit example from
one of the datasets used (“Smut Fungi & Caryophillaceus
plants” [27] with cost vector 〈0, 1, 1, 1〉) where indeed
EUCALYPT finds more (correct) solutions, some of which

are acyclic, that are time-feasible. The same result is
observed for other datasets (examples not shown).
Notice that sometimes when enumerating optimal rec-

onciliations, CORE-PA outputs the same one more than
once. In all our tests, we were never able to obtain more
than 1000 different reconciliations with CORE-PA. This
explains the presence of the value 1000 twice in Table 1
and Table 2 (each time indicated by a ∗) while EUCALYPT
for the same datasets and cost vectors finds many more
solutions.
NOTUNG generates only time-feasible reconciliations

and their number coincides with the result of EUCALYPT
for all the datasets used. However, NOTUNG imposes
some restrictions on the cost values. Indeed, the cost of a
cospeciation is always assumed to be equal to 0 and the
cost of a loss positive.

Non positive cost vectors
No assumption needs to be made by EUCALYPT concern-
ing the cost values: it thus allows negative ones while
cospeciation and loss may have any arbitrary cost. As
already mentioned, in this case we can compare it only
with CORE-PA. The results of these experiments are pre-
sented in Table 2. In almost all of the cases, CORE-PA
does correctly determine the total number of (un)feasible
optimal solutions.

Results of EUCALYPT and discussion
The results obtained by EUCALYPT and presented in
Tables 1 and 2 are striking for various reasons.
First, we observe that when the size of the tree increases,

in most cases the total number of optimal solutions also
increases. However, this does not hold for the number
of time-feasible optimal solutions. For instance, accord-
ing to the results given in Table 1, for the dataset EC
having 7 and 10 leaves, the number of time-feasible opti-
mal solutions is much higher than for the case of dataset
COG4964 (having 100 and 27 leaves). Even for the same
dataset, this number can be reduced significantly depend-
ing on the cost vector. In particular when the cost of
the losses is 0, the number of optimal solutions can be
huge even for relatively small datasets, such as for exam-
ple FD (20-51 leaves). This makes it practically impossible
to check the time-feasibility of each of them (this explains
the presence of a * in some cells of Tables 1 and 2).
Thus, it seems that the cost vector and the topology of
the trees together with the mapping of the leaves play a
more important role in the total number of time-feasible
solutions.
We also tested EUCALYPT on the much bigger trees of

Wolbachia and the arthropods. Due to limitations in space
and time, we could not enumerate all optimal solutions
because their number is huge: 1.01 × 1047 for cost vector
〈−1, 1, 1, 1〉, 3.87 × 10136 for cost vector 〈0, 1, 1, 0〉, 3.19 ×
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Table 1 Number of solutions found by each one of the programs CORE-PA, NOTUNG and EUCALYPT

Dataset
Leaves

Cost vector
Reconciliations

H P
CORE-PA EUCALYPT

#T #C #A #T #C #A #CA

EC 7 10

〈0, 1, 1, 1〉 16 6 10 16 6 10 5

〈0, 1, 2, 1〉 14 0 14 18 0 18 6

〈0, 2, 3, 1〉 12 0 12 16 0 16 4

GL 8 10

〈0, 1, 1, 1〉 2 0 2 2 0 2 1

〈0, 1, 2, 1〉 2 0 2 2 0 2 1

〈0, 2, 3, 1〉 2 0 2 2 0 2 1

SC 11 14

〈0, 1, 1, 1〉 1 0 1 1 0 1 1

〈0, 1, 2, 1〉 1 0 1 1 0 1 1

〈0, 2, 3, 1〉 1 0 1 1 0 1 1

RP 13 13

〈0, 1, 1, 1〉 18 2 16 18 2 16 3

〈0, 1, 2, 1〉 3 1 2 3 1 2 1

〈0, 2, 3, 1〉 3 1 2 3 1 2 1

SFC 15 16

〈0, 1, 1, 1〉 184 40 144 184 40 144 1

〈0, 1, 2, 1〉 40 40 0 40 40 0 0

〈0, 2, 3, 1〉 40 40 0 40 40 0 0

PLML 18 18

〈0, 1, 1, 1〉 158 0 158 180 0 180 4

〈0, 1, 2, 1〉 2 0 2 2 0 2 1

〈0, 2, 3, 1〉 11 0 11 11 0 11 2

PLMP 18 18

〈0, 1, 1, 1〉 2 0 2 2 0 2 1

〈0, 1, 2, 1〉 2 0 2 2 0 2 1

〈0, 2, 3, 1〉 17 0 17 18 0 18 2

RH 34 42

〈0, 1, 1, 1〉 32 0 32 42 0 42 4

〈0, 1, 2, 1〉 158 158 0 2208 2208 0 0

〈0, 2, 3, 1〉 22 22 0 288 288 0 0

PP 36 41

〈0, 1, 1, 1〉 1000* 0 1000 5120 0 5120 4

〈0, 1, 2, 1〉 11 0 11 72 0 72 2

〈0, 2, 3, 1〉 11 0 11 72 0 72 2

FD 20 51

〈0, 1, 1, 1〉 1000* 282 718 25184 1792 23392 11

〈0, 1, 2, 1〉 108 44 64 408 132 276 5

〈0, 2, 3, 1〉 22 22 0 80 80 0 0

COG2085 100 44

〈0, 1, 1, 1〉 1000* 0 1000 44544 2304 42240 3

〈0, 1, 2, 1〉 1000* 0 1000 37568 480 37088 7

〈0, 2, 3, 1〉 888 0 888 46656 0 46656 4

COG3715 100 40

〈0, 1, 1, 1〉 1000* 1000 0 1172598 1155958 16640 6

〈0, 1, 2, 1〉 9 9 0 9 9 0 0

〈0, 2, 3, 1〉 13 13 0 33 33 0 0

COG4964 100 27

〈0, 1, 1, 1〉 85 85 0 224 224 0 0

〈0, 1, 2, 1〉 13 13 0 36 36 0 0

〈0, 2, 3, 1〉 17 17 0 54 54 0 0

COG4965 100 30

〈0, 1, 1, 1〉 1000* 408 592 17408 5632 11776 2

〈0, 1, 2, 1〉 141 0 141 640 0 640 2

〈0, 2, 3, 1〉 1000* 276 724 6528 1408 5120 2

Number of solutions found by each one of the programs CORE-PA, NOTUNG and EUCALYPT for each dataset and each cost vector 〈cc , cd , cs , cl〉. For EUCALYPT and
CORE-PA the columns represent: #T = total number of optimal solutions, #C = total number of cyclic solutions and #A = total number of acyclic solutions. In all cases #A
is always equal for both NOTUNG and EUCALYPT. For EUCALYPT the column #CA denotes the number of event classes in the set of acyclic solutions. CORE-PA limits to
1000 the total number of enumerated solutions and these cases are denoted by the symbol ∗. Bold numbers indicate the cases where the number of solutions
produced by CORE-PA differs from the one found by EUCALYPT.
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Table 2 Number of solutions found by the programs CORE-PA and EUCALYPT

Dataset
Leaves

Cost vector
Reconciliations

H P
CORE-PA EUCALYPT

#T #C #A #T #C #A #CA

EC 7 10
〈−1, 1, 1, 1〉 2 0 2 2 0 2 1

〈0, 1, 1, 0〉 18 0 18 24 0 24 8

GL 8 10
〈−1, 1, 1, 1〉 2 0 2 2 0 2 1

〈0, 1, 1, 0〉 12 0 12 12 0 12 5

SC 11 14
〈−1, 1, 1, 1〉 1 0 0 1 0 1 1

〈0, 1, 1, 0〉 82 2 80 113 3 110 18

RP 13 13
〈−1, 1, 1, 1〉 3 1 2 3 1 2 1

〈0, 1, 1, 0〉 69 25 44 117 45 72 29

SFC 15 16
〈−1, 1, 1, 1〉 40 40 0 40 40 0 0

〈0, 1, 1, 0〉 1000* 741 259 6332 5069 1263 81

PLML 18 18
〈−1, 1, 1, 1〉 2 0 0 2 0 2 1

〈0, 1, 1, 0〉 45 2 43 448 28 420 16

PLMP 18 18
〈−1, 1, 1, 1〉 2 0 0 2 0 2 1

〈0, 1, 1, 0〉 147 0 147 262 0 262 34

RH 34 42
〈−1, 1, 1, 1〉 197 197 0 1056 1056 0 0

〈0, 1, 1, 0〉 1000* 0 1000 4080384 310284 3770100 275

PP 36 41
〈−1, 1, 1, 1〉 17 0 17 144 0 144 2

〈0, 1, 1, 0〉 182 8 174 498960 55440 443520 129

FD 20 51
〈−1, 1, 1, 1〉 196 86 110 944 368 576 7

〈0, 1, 1, 0〉 1000* 1000 0 1.5 × 1015 * * *

COG2085 100 44
〈−1, 1, 1, 1〉 1000* 0 1000 109056 26496 82560 3

〈0, 1, 1, 0〉 1000* 0 1000 3.5 × 1011 * * *

COG3715 100 40
〈−1, 1, 1, 1〉 869 869 0 63360 63360 0 0

〈0, 1, 1, 0〉 1000* 0 1000 1.2 × 1012 * * *

COG4964 100 27
〈−1, 1, 1, 1〉 13 13 0 36 36 0 0

〈0, 1, 1, 0〉 1000* 0 1000 8586842 2603598 5983244 300

COG4965 100 30
〈−1, 1, 1, 1〉 1000* 335 665 44800 13312 31488 5

〈0, 1, 1, 0〉 1000* 0 1000 907176 387192 519984 208

Number of solutions found by the programs CORE-PA and EUCALYPT for each dataset and each cost vector 〈cc , cd , cs , cl〉. The columns represent: #T = total number of
optimal solutions, #C = total number of cyclic solutions and #A = total number of acyclic solutions. For EUCALYPT the column #CA denotes the number of event classes
in the set of acyclic solutions. CORE-PA limits to 1000 the total number of enumerated solutions and these cases are denoted by the symbol ∗. Bold numbers indicate
the cases where the number of solutions produced by CORE-PA differs from the one found by EUCALYPT.

1048 for cost vector 〈0, 1, 1, 1〉, and finally 1.01 × 1047 for
cost vector 〈0, 1, 2, 1〉. We did however enumerate optimal
solutions until one was produced that was found acyclic.
For the cost vector 〈0, 1, 1, 1〉, the first produced optimal

solution was already acyclic as were those that were enu-
merated next, hinting to the possibility that the propor-
tion of acyclic solutions is high among all optimal ones.
For the remaining cost vectors, the initial optimal solu-
tions enumerated by EUCALYPT were indeed all cyclic,
and given their number and the time required by each
acyclicity test, we stopped the process of checking after
one week. Two cases are then possible: either there are

no acyclic solutions meaning optimal ones have a higher
cost; or the proportion of acyclic solutions is low among
all optimal ones.
The results confirm once again that the number of opti-

mal reconciliations can be huge. Moreover, the problem
remains even if we restrict the results to only time-feasible
solutions. In order to deal with this huge set of solutions,
we propose to group them in classes depending on the
number of events observed. As shown in Tables 1 and 2,
the number of classes in a set of time-feasible optimal
solutions is significantly smaller compared to the size of
the set itself.
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Table 3 Searching for time-feasible solutions by varying k

Dataset

Costvector

〈−1, 1, 1, 1〉 〈0, 1, 2, 1〉 〈0, 2, 3, 1〉
kstart → kA o → okA #A kstart → kA o → okA #A kstart → kA o → okA #A

SFC 7 → 6 6 → 7 16 7 → 6 21 → 22 16 7 → 5 31 → 35 12

RH 6 → 5 8 → 12 16 6 → 5 43 → 48 192 6 → 5 62 → 68 48

COG3715 13 → 12 10 → 11 288 22 → 6 51 → 176 6 22 → 6 80 → 206 2

COG4964 22 → 4 20 → 208 30 13 → 12 33 → 34 288 13 → 12 49 → 50 288

For some datasets (SFC, RH, COG3715 and, COG4964), the number of optimal time-feasible solutions is zero when reconciliations are obtained by using a given cost
vector and unbounded k. After identifying kstart (minimum k whose optimal cost o is equal to the optimal cost obtained for unbounded k), we decremented k until kA
(maximum k which generates acyclic solutions) is found. For each pair (dataset, cost vector), the following values are given: the decrement of the bound (from kstart to
kA), the new optimum found (from o to oA) and the new number of acyclic solutions (#A).

For instance, for dataset EC and vector 〈0, 1, 1, 1〉, the
10 optimal time-feasible solutions are split in 5 classes
〈#c, #d, #s, #l〉 as follows: 1 for 〈4, 1, 4, 1〉, 3 for 〈4, 0, 5, 1〉,
2 for 〈5, 0, 4, 2〉, 2 for 〈3, 1, 5, 0〉 and, 2 for 〈3, 0, 6, 0〉. For
dataset RP and vector 〈0, 1, 1, 1〉, the 16 optimal time-
feasible solutions are split in 3 classes: 4 for 〈7, 0, 5, 3〉,
2 for 〈4, 0, 5, 1〉 and, 10 for 〈6, 0, 6, 2〉. Even more inter-
estingly, for dataset SFC and vector 〈0, 1, 1, 1〉, the 144
optimal time-feasible solutions belong to a unique class:
〈4, 0, 11, 0〉. For more details on this type of analysis, we
refer to Additional file 1.
Finally, we want to call attention to the fact that, in

many cases of datasets and cost vectors, there is no opti-
mal solution that is time-feasible. Indeed, in the case of
the datasets from [17], from 3983 trees we choose 429
with between 20 and 50 leaves for which the total num-
ber of optimal reconciliations is less than 10000. Among

these 429 trees (rooted according to the one that leads to
a minimum total cost of the reconciliation) and using the
vector 〈0, 2, 3, 1〉, 233 (i.e. more than half ) have no time-
feasible solutions. To deal with this problem, we consider
the restriction when the host switches are constrained to
have bounded distance.

k-bounded-All-MPR problem
The main concern of this section is to discuss the effect of
bounding the distance of the host switch events. The vari-
ables that will be defined here must be considered relative
to a fixed dataset and a fixed cost vector. We denote by
S(k) the set of optimal solutions obtained when the max-
imum distance allowed for a host switch is k, and denote
by optk their cost. We also denote by opt∗ the optimum
cost of an acyclic reconciliation (without any bound on the
host switch distance): observe that this value is in general

Table 4 Reducing the number of optimal time-feasible solutions by bounding k

Dataset

Costvector

〈−1, 1, 1, 1〉 〈0, 1, 2, 1〉 〈0, 2, 3, 1〉
k/k′ #AC/#AC′ #T/#T ′ k/k′ #AC/#AC′ #T/#T ′ k/k′ #AC/#AC′ #T/#T ′

EC 3/3 2/2 2/2 3/3 18/16 18/16 3/3 16/16 16/16

GL 4/4 2/2 2/2 4/4 2/2 2/2 4/4 2/2 2/2

SC 6/6 1/1 1/1 6/6 1/1 1/1 6/6 1/1 1/1

RP 9/9 2/2 3/3 8/8 2/2 8/8 2/2 2/2 3/3

PMP 6/6 2/2 2/2 6/6 2/2 2/2 5/5 11/4 11/4

PML 5/5 2/2 2/2 5/5 2/2 2/2 3/3 18/6 18/6

PP 4/4 144/96 144/96 4/4 72/48 72/48 4/4 72/48 72/48

FD 9/10 576/240 944/512 9/9 276/4 408/8 − − −
COG2085 14/14 82560/9408 109056/9408 14/14 37088/4032 37568/4032 14/14 46656/5184 46656/5184

COG4965 16/16 31448/15744 44800/22400 16/16 640/320 640/320 13/16 5120/2560 6528/3328

For some datasets, the number of optimal time-feasible solutions may be huge when k is unbounded. In some cases, however, by introducing a bound on k we can
greatly reduce the number of time-feasible solutions while keeping their optimality. For all datasets whose number of acyclic solutions is positive for unbounded k, we
identified kstart (minimum k whose optimal cost is equal to the optimal cost obtained for unbounded k) and we searched for the minimum k′ ≥ kstart whose number of
acyclic solutions is non zero. We executed this procedure for every pair (dataset, cost vector) for which the number of optimal acyclic solutions is positive. In the first
column, the values for k = kstart and k′ are given. #AC/#AC′ denotes the number of optimal acyclic solutions for the case when the switches are unbounded and the
case when they are bounded by k′ , respectively. The same relation is shown for the total number of optimal solutions in the column #T/#T ′ .
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NP-hard to determine. Clearly, if S(∞) contains at least
one time-feasible solution then opt∞ = opt∗. However,
this is not always the case (see Table 1 for some exam-
ples): let us then consider the case where opt∞ < opt∗.
We are now interested in finding an upper bound on the
value of opt∗ by making use of the possibility given by
EUCALYPT to limit the distance of switches. To this pur-
pose, we define kA as the biggest value of k for which S(k)
contains at least one acyclic solution (in general, opt∞ <

opt∗ ≤ optkA ): observe that in the case of integer cost val-
ues, when opt∞ − optkA = 1, we have that optkA coincides
with opt∗. We can determine kA as follows: for every opti-
mal reconciliation in S(∞), we keep track of the longest
distance observed for a switch and denote by kstart the
smallest value observed among all optimal solutions; then
starting from kstart , we decrement this value until at least
one time-feasible solution is found. It is interesting to note
that kA is always close to the starting value kstart , and that
it frequently happens that opt∞ − optkA = 1. This shows
that themethod is efficient in practice as we do not have to
check too many values before finding time-feasible opti-
mal solutions. In particular, we applied this idea to some
cases where no time-feasible solutions were found: the
results are shown in Table 3.
Even in the case where S(∞) contains already some

time-feasible solutions, bounding the distance of the
switches remains interesting because the number of such
solutions can be too large to handle. The basic idea is to
choose a value k′, with ∞ > k′ ≥ kstart , and to focus
our attention only on S(k′): in this way, the optimal cost
of the solutions is preserved and |S(k′)| ≤ |S(∞)|. In real
situations, choosing k′ must be driven by some ad hoc bio-
logical consideration: however, in our case, we decided to
fix k′ to the value that is nearest to kstart for which the opti-
mal cost does not change and the number of time-feasible
solutions is strictly positive. Some results are shown in
Table 4: it is worth observing that k′ always either coin-
cides or is only a few steps away from kstart , which again
shows the efficiency of the method in practice.

Conclusions
We presented in this paper a software, EUCALYPT, that
can find one optimal reconciliation of a pair of host
and parasite trees, can compute the number of all opti-
mal solutions, and can enumerate them all. The first two
problems are handled in polynomial time, while the enu-
meration has a polynomial delay complexity. EUCALYPT
also displays the classes of solutions observed, where two
solutions are in a same class if the number of each event
in the two is the same.We show that although the number
of classes of solutions may be considerably smaller than
the total number of optimal reconciliations, it neverthe-
less may remain very high even for relatively small trees.
Finally, we introduced the k-bounded-All-MPR problem

and showed how it could be applied either to find optimal
time-feasible solutions when the parsimonious method
found none, or to reduce their number if this is too large
to be handled in practice for further analysis. EUCALYPT
takes a nexus file as input and generates all the informa-
tion related to the reconciliations described in the paper.
The datasets used in this paper are also available on the
website of the software.
All the results of this study point to the necessity of

introducing new criteria besides parsimony in the model
for an optimal reconciliation. The idea of imposing an
evolutionary distance to the host switches is one possible
criterion when it can be justified from a biological point
of view. Other types of information, such as for instance
geographic, might enable also to indicate that certain
mappings of internal vertices are impossible. One next
improvement of EUCALYPT will therefore be to allow the
user to indicate that certain associations of internal ver-
tices should be forbidden. Finally, it remains an open ques-
tion whether some such additional criteria could change
the complexity of the reconciliation problem when only
feasible (acyclic) solutions are to be found or enumerated.

Availability and requirements
• Project name: Eucalypt
• Project home page: http://eucalypt.gforge.inria.fr/
• Operating system(s): Any
• Programming languages: Java 1.6
• Other requirements: None
• License: CeCILL
• Any restrictions to use by non-academics: None.
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Additional file 1: Model, algorithms and experimental results.
Description of the model and pseudo-code for the algorithms for finding
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(Algorithm 2). Collection of plots showing the characteristics of the set of
optimal solutions for the studied datasets.
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Tannier E. An efficient algorithm for gene/species trees parsimonious
reconciliation with losses, duplications and transfers. In: Proceedings of
the 8th annual RECOMB satellite workshop on comparative genomics
(RECOMB-CG 2010), Volume 6398 of lecture notes in bioinformatics.
Ottawa, Canada: Spring-Verlag Berlin Heidelberg; 2011. p. 93–108.

19. Merkle D, Middendorf M, Wieseke N. A parameter-adaptive dynamic
programming approach for inferring cophylogenies. BMC Bioinformatics
2010;11(Supplementary 1):10.

20. Bansal MS, Alm EJ, Kellis M. Reconciliation revisited: handling multiple
optima when reconciling with duplication, transfer, and loss. In:
Proceedings of the 17th international conference on research in
computational molecular biology, RECOMB’13. Berlin: Heidelberg
Springer-Verlag; 2013. p. 1–13.

21. Vienne DMD, Giraud T, Skyhoff JA. When can host shifts produce
congruent host and parasite phylogenies? A simulation approach. JEvol
Biol 2007;20(4):1428–38.

22. Poulin R, Mouillot D. Parasite specialization from a phylogenetic
perspective: a new index of host specificity. Parasitology 2003;126:473–80.

23. Deng J, Yu F, Li HB, Gebiola M, Desdevises Y, Wu SA, et al.
Cophylogenetic relationships between Anicetus parasitoids
(Hymenoptera: Encyrtidae) and their scale insect hosts (Hemiptera
Coccidae). BMC Evol Biol 2013;13:275.

24. Hafner M, Nadler S. Phylogenetic trees support the coevolution of
parasites and their hosts. Nature 1988;332:258–9.

25. Paterson A, Palma R, Gray R. Drowning on arrival, missing the boat, and
x-events: How likely are sorting events? In: Page R D M, editor. Tangled
trees: Phylogeny, cospeciation, and coevolution. Chicago: USA: UC Press;
2003. p. 287–307.

26. Hugot JP. New evidence for hystricognath rodent monophyly from the
phylogeny of their pinworms In: Page R D M, editor. Tangled trees:
Phylogeny, cospeciation, and coevolution. Chicago: USA: UC Press; 2003.
p. 144–73.

27. Refrégier G, Gac M, Jabbour F, Widmer A, Shykoff J, Yockteng R, et al.
Cophylogeny of the anther smut fungi and their caryophyllaceous hosts:
Prevalence of host shifts and importance of delimiting parasite species
for inferring cospeciation. BMC Evol Biol 2008;8:100.

28. Hughes J, Kennedy M, Johnson KP, Palma RL, Page RDM. Multiple
cophylogenetic analyses reveal frequent cospeciation between
pelecaniform birds and pectinopygus lice. Syst Biol 2007;56(2):232–51.

29. Ramsden C, Holmes E, Charleston M. Hantavirus evolution in relation to
its rodent and insectivore hosts. Mol Biol Evol 2009;26:143–53.

30. Hugot JP. Primates and their pinworm parasites: the Cameron hypothesis
revisited. Syst Biol 1999;48(3):523–546.

31. Balbuena JA, Mí-guez-Lozano R, Blasco-Costa I. PACo: a novel procrustes
application to cophylogenetic analysis. PLoS ONE 2013;8(4):e61048.
http://dx.doi.org/10.1371%2Fjournal.pone.0061048.

32. Simões PM, Mialdea G, Reiss D, Sagot MF, Charlat S. Wolbachia
detection: an assessment of standard PCR protocols. Mol Ecol Resour
2011;11(3):567–72.

33. Simões PM. Diversity and dynamics of Wolbachia-host associations in
arthropods from the society archipelago, French Polynesia, PhD thesis.
France: University of Lyon 1; 2012.

34. Bruni V. Algoritmi per la ricostruzione cofilogenetica, Master’s thesis.
Florence, Italy: University of Florence, Faculty of Mathematical, Physical
and Natural Sciences; 2013. [In Italian].

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://dx.doi.org/10.1371%2Fjournal.pone.0061048

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Model
	Algorithm
	Finding one solution
	Enumerating all optimal solutions
	Complexity analysis


	Results and discussion
	Datasets
	Comparison with CoRe-Pa and Notung
	Non positive cost vectors
	Results of Eucalypt and discussion
	k-bounded-All-MPR problem

	Conclusions
	Availability and requirements
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

