Error estimates for the Euler discretization of an optimal control problem with first-order state constraints

Joseph Frederic Bonnans 1, 2 Adriano Festa 3
2 Commands - Control, Optimization, Models, Methods and Applications for Nonlinear Dynamical Systems
CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique, Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, Polytechnique - X, CNRS - Centre National de la Recherche Scientifique : UMR7641
Abstract : We study the error introduced in the solution of an optimal control problem with first order state constraints, for which the trajectories are approximated with a classical Euler scheme. We obtain order one approximation results in the L ∞ norm (as opposed to the order 2/3 obtained in the literature). We assume either a strong second order optimality condition, or a weaker one in the case where the state constraint is scalar, satisfies some hypotheses for junction points, and the time step is constant. Our technique is based on some homotopy path of discrete optimal control problems that we study using perturbation analysis of nonlinear programming problems.
Type de document :
Article dans une revue
SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2017, 55 (2), pp.445--471
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01093229
Contributeur : J. Frederic Bonnans <>
Soumis le : jeudi 27 août 2015 - 10:57:31
Dernière modification le : jeudi 11 janvier 2018 - 06:22:34
Document(s) archivé(s) le : mercredi 26 avril 2017 - 10:34:43

Fichier

ErrorEstimRevision.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01093229, version 2

Citation

Joseph Frederic Bonnans, Adriano Festa. Error estimates for the Euler discretization of an optimal control problem with first-order state constraints. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2017, 55 (2), pp.445--471. 〈hal-01093229v2〉

Partager

Métriques

Consultations de la notice

346

Téléchargements de fichiers

91