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Abstract. This paper presents a CIVA optimized ultrasonic inspection simulation tool, which takes benefit of the power of
massively parallel architectures : graphical processing units (GPU) and multi-core general purpose processors (GPP). This
tool is based on the classical approach used in CIVA : the interaction model is based on Kirchoff, and the ultrasonic field
around the defect is computed by the pencil method. The model has been adapted and parallelized for both architectures. At
this stage, the configurations addressed by the tool are : multi and mono-element probes, planar specimens made of simple
isotropic materials, planar rectangular defects or side drilled holes of small diameter. Validations on the model accuracy and
performances measurements are presented.
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INTRODUCTION

Inspection simulation is used in a lot of non-destructive evaluation (NDE) application : from designing new in-
spection methods and probes to qualifying methods and demonstrating performances through virtual testing while
developing methods. The CIVA software, developed by CEA-LIST and partners is a multi technique platform (Ultra-
sonic Testing (UT), Computed Tomography and Radiographic Testing) used to both analyze acquisitions and to run
simulations validated against international benchmark [1]. It benefits from semi-analytics models and user friendly
GUI to design an inspection case with the help of CAD tools and imaging. However, due to the potential complexity
of the configurations, current semi-analytical models based on asymptotic developments takes minutes to hours to run
a simulation. Significant efforts are made in the CIVA framework to reduce computation times by working both on
models and computational aspects. The works reported here ties in with this general approach.

Nowadays, new massively parallel architectures can empower computational softwares, at the expense of adapting
algorithms to the specificities of those architectures to highlight and improve parallel computation steps. The exploita-
tion of both multicore-GPP and GPU capabilities results in a new intensively parallel algorithm of simulation of UT
inspection [2] [3]. This new model relies on analytical solution to the beam propagation. Its implementations on both
architectures use high performances signal processing libraries (Intel MKL on GPP and NVidia cuFFT on GPU). The
new model is, however, limited to canonical configurations due to the strict parallelism requirements and to the lack
of genericity of analytical beam propagation.

This paper is organized as follows. The first section presents the new model with the specificities of the anylitical
solutions and the resulting limitations to the model. Then, GPP and GPU implementations are detailed. In the next
section, the validity of this model is tested against real sets of data from the benchmark held at QNDE2013 conference,
conducted by the WFNDEC (World Federation of NDE Centers). Furthermore performances are measured with both
implementations on high end hardware to provide some sort of fair comparison. Finally, the last section concludes the
paper and discusses future works.

UT INSPECTION SIMULATION

This section is divided in three distinct parts toward presenting the model of the fast and massively parallel ultrasonic
simulation. An inspection simulation rely on three steps :

• computation of the field transmitted by the probe on the flaw,
• diffraction by the defect,



• computation of the field on the sensor for echo synthesis.

Due to Auld’s reciprocity principle, the field diffracted by the defect to te receiving probe can be obtained by coputing
the field transmitted by the receiver (used as an emitter) on the defect. This allow to group computations of the field
in reception and in emission together. Transmission of the field transmitted by the probe on the flaw, and field/flaw
interaction for received echo synthesis.

Field Computation Using Paraxial Ray Tracing Method

The field computation relies on the pencil method, a generic approach for heterogeneous and anisotropic structures.
By evaluating the ray path of the beam, from the transducer to the observation point, it is possible to evaluate the time
of flight and the amplitude of the contribution of the beam using energy conservation principle on the tube. As seen
in Figure 1, the beam may propagate through different materials and cross multiple interfaces : its contributions Ψ

is determined by the propagation matrix obtained by multiplying the elementary contributions of each section of the
pencil with the initial contribution Ψ0, as shown in equation 1 [4].

Ψ = Lprop1.Lrot1.Linter1.Lprop2.Lrot2.Linter2...Lpropn.Lrotn.Lintern ∗Ψ0 (1)
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FIGURE 1. Ray tube visualization.

In general case, there is no simple solution to determine the ray path from the source to the computation point.
However, in isotropic and homogeneous structures, analytical methods can be used to determine ray path. In direct
mode, for standard geometrical surfaces, it is possible to determine a polynomial modelizing the path following
Snell-Descartes. The roots of this polynomial, whose degree vary from 4th for planar surfaces to 16th for torical
surfaces, correspond to the possible solutions for the ray path. They are determined numerically, through Newton’s
and Laguerre’s Method [5]. In the case of half-skip mode, ray path can only be determined analytically for planar
surfaces and backwalls, through two dimensional Newton’s method solving. Those analytical method allows for a
greater regularity benefitings to the requierments of massively parallel architecutes.

Those limits results in an analytical model dedicated only to a specific set of geometries, where the propagation
matrix can be fully determined preemptively thus avoiding costly matrix multiplication, for direct and half skip mode.
To benefit from highly parallel architecture, this model will rely on a regular pencil distribution over the sampled
transducer and a numerical resolution of the analytical equations.

Once the pencils computed on the whole transducer surface, their summation with the application of delay laws
results in the computation of the impulse response, as seen in Figure 2. As this model addresses defect response
simulation, the field is outlined as the maximum of amplitude, the phase, the corresponding time of flight, the direction
of propagation and the wave polarisation.

UT Diffraction Simulation using Kirchhoff Coefficient

UT fields are computed, both in emission and reception (using Auld’s reciprocity theorem), over the studied defect,
on a coarse grid.

To sum up the contribution over the defect surface, a finer computation is required (on a finer grid, one order
of magnitude finer). The field data (amplitude, phase, time of flight, polarization and direction of propagation) are
interpolated from the grid and are used to compute the UT diffraction.
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FIGURE 2. Summation of the impulse response over the sensor.

This model uses the Kirchhoff model, whose coefficients are valid near specular reflection [6]. All the elementary
diffraction contributions computed on the defect contribute to the echo impulse response.

The echo signal is the result of the convolution of the echo impulse response signal an the reference signal.

OVERVIEW OF FAST IMPLEMENTATIONS

In this section, the choices of implementation on both architecture will be discussed under the specificities of the
hardware.

GPP Characteristics

Modern day GPP are composed of multiple general purpose cores. Those are aimed at executing independent,
heavyweight, tasks. GPP disposes of two parallelism levels.

• A fine grained parallelism relying on specific SIMD instructions (Single Instruction Multiple Data) which execute
the same operation on short vectors (128 to 512 bits). For example, with 128-bit vectors, a SIMD instruction can
perform simultaneously four additions on four single-precision floating point numbers (32-bit).

• A coarse grained parallelism relying on multithreading to enable multiple logical tasks to reside simultaneously
on the GPP. The OpenMP API is aimed at shared-memory parallelism : it creates a thread per GPP core, each with
its own stack where locals variables are located but they can also communicate through some shared variable. Its
work distribution rely on a succession of sequential sections (with only one active thread) with parallel sections
(with all threads active) assembled in a fork-join fashion.

GPP UT simulation implementation

On the GPP, the computations are regrouped by coarse step in order to even the load on each core of the GPP and
in order to maximize the reuse of data describing the simulation.

On each step, the OpenMP API is used to parallelize the computations. Moreover the Intel Math Kernel Library
(MKL) is used to benefit from fast FFT implementation on the GPP. This library benefits from SIMD instructions
available on the processor and rely on a precomputed ”plan” to prepare the coefficients for a specific signal size. Once
precomputed, those can be reused as needed for the computations. In order to benefits from the best performances, the
signal size has to be determined first and used repeatedly throughout the simulation.

Signal processing is divided in two main steps, each relying on a specific signal size : one concerns the field data
computation and the second is responsible for the response signal computation.

Figure 3 represents the algorithm developed for the GPP.
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FIGURE 3. GPP algorithm overview.

NVIDIA GPU Architecture Considerations

NVIDIA released a new programming architecture in 2006 to ease GPGPU on its GPU. This architecture comes
with both a programming paradigm and a C-like interface, called Compute Unified Device Architecture (CUDA), to
program GPU. A CUDA task is called ”kernel” and it is represented by a C-like function which will be executed once
by all threads. With CUDA, GPU are used as coprocessors to their host systems. They dispose of their own memory,
off-chip DRAM, called global memory, which is slow to access memory (comparing to GPU frequency), but it is
kept alive for the duration of the application allowing communication between kernels without back-and-forth data
movement with the host.

A GPU consists of severals Streaming Multiprocessors (SM, 16 on current high end cards). Each one is composed
of multiple elements, whose numbers depend on hardware generation, for example :

• CUDA cores for integer and floating-point arithmetic operations;
• one or two schedulers to manage threads.

Beside these computing elements, each SM disposes of :

• a rather small (16KB, up to 48KB on recent devices) but fast shared memory on the SM, for exchanges between
its cores;

• Special Function Units (SFU) for floating-point transcendentals functions;
• a limited, per SM, set of registers divided between the threads of a kernel at compile-time.

CUDA multiprocessors use the Single Instruction Multiple Thread (SIMT) architecture : each cycle, one instruction
is executed by all the cores of a single SM. Threads are grouped into packs of 32 threads, called warps, to be scheduled
by each SM. A SM can host multiple warps up to its physical limits, depending of the required configuration form the
kernel.

This model is most efficient when each thread in a warp executes the same instruction. In case of divergence,
each branch is consecutively executed by the warp, with threads following the other branch doing nothing. Moreover,
memory accesses to the different memory of a GPU benefit from data locality by optimizing for contiguous threads
of a warp. Each thread disposes of its own program counter and of its own registers. Thread contexts of warps stay on
the multiprocessor for the duration of their execution enabling a cheap and fast hardware scheduling of ready warps in
spite of execution time and/or latency.



Implementation on the GPU

Due to the high need for computational regularity on GPU, the control flow of this implementation will aim at
executing the same task over multiple data and proceed in steps, each corresponding to dedicated kernel. To benefits
from highest GPU performances, kernel were developed to use single-precision floating point opretaions (IEEE-754).
To perform signal processing operations, this implementation relies on the optimized cuFFT library which is optimized
to perform efficiently on large batches of signals. This library establishes a ”plan”, consisting of the precomputed
coefficients which are applied to the signals. It is most efficient when performed repeatedly on a batch of signals of
the same dimensions (number of signals and signal length), to reuse a previously computed plan.

The following Figure 4 illustrate the overall necessary computations steps detailed as follow.
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FIGURE 4. GPU algorithm overview.

Signals size determination

The first step of the computation determines the temporal width of temporary data using analytical ray path
resolution for time of flight computation. Once the temporal width of the signals is determined, this information is
sent back to the host for allocating memory and cuFFT plan creation. This size is the same for all the temporary
signals needed for field computation to allow the use of a single cuFFT plan to compute FFT on large batches of
signals.

Field data computation

Because of GPU memory limitations, with high end consumer grade hardware disposing of 1.5 GB of memory at
most, the whole field computation has to be done on a subset of sensor positions due to the size of temporary data. The
following steps are executed on the different subsets of positions by a loop controlled by the host.

For each position, elementary contributions of all the pencils in a specific field point need to be summed following
the delay law. The kernel assigns a couple of position/field point to a single CUDA block, to first compute pencils
data and store this data in their own shared memory. Threads then loop over the different shots of the delay law to
apply delays to the pencils, fetched from shared memory, and proceed with the summation to the signals residing in
global memory. It results in completely random accesses to the signal, as there is no way to predict if two distinct
pulses will collide in memory due to temporal span : this summation is done using atomic operations. The result of
this summation is three impulse responses, one for each displacement coordinate, which are then convoluted with the
reference signal.

The main direction is extracted by a new CUDA kernel from those convoluted signals, as a reduction in shared
memory performed collaboarively by threads from a single block. This direction is saved for echo computations. The
scalar projection of the displacement against this direction is computed.

The envelope of this signal is computed through the use of FFT. Its maximum of amplitude is extracted by another
CUDA kernel. Its extraction is again done through a contiguous scan of the signal and a collaborative reduction through



shared memory. It is used to determine the phase shift of the field propagation and to extract the associated time of
flight.

Impulse response computation

For each shot and for each sensor position, a response signal is computed. A kernel computes, for a defined mode,
the interaction of the received and the emitted field.

The defect is modelized by a set of fine grained sampling point, on witch field information are bilinearly interpolated
from previously computed field data. Threads of a block works collaboratively over the whole set of defect points to
compute the elementary interaction and sum this data to the global response signal, for a given sensor position and a
given shot. As for summing elementary contribution to construct UT field signal data, due to the random nature of this
summation to the impulse response, it is necessary to use atomic operations on the signal residing in global memory.

Once computed, the host calls to cuFFT back and forth to convolute the impulse response by the reference signal.

PERFORMANCES OF THE MASSIVELY PARALLEL IMPLEMENTATIONS

To provide a realistic analysis of the results obtained by both implementations, among the limits of this model,
realistic set of simulations are studied from the benchmark session of the QNDE 2013 conference.

Test cases

The selected cases consist of planar parts of homogeneous isotropic steel, inspected at L45°for several focusing
depths :

FBH Serie1 A series of 10 �3mm flat bottom holes;
FBH Serie2 A series of 6 �3mm flat bottom holes;
Notch A back wall breaking notch residing on the planar back wall of the part.

The characteristics of those configurations is summed up in Table 1.
TABLE 1. Studied configurations.

Dataset FBH Series 1 FBH Series 2 Notch

# of defects 10 FBH 6 FBH 1 notch

Probe 64 channels↔ 128 samples

# of position 361 201

# of delay laws 7 4

UT field sampling # 90 54 100

defect sampling # 4140 2484 12321

Mode L direct L direct Half skip L

Results Validations

To validate the accuracy of the new parallel model, the results of both of its implementations have been studied.
As the CIVA 11.0 software is validated against real experiments through benchmarking, especially during the QNDE
2013 conference, its simulations will serve as a point of reference for result validation [7].

The dataset presents an important number of data, for each sensor position and each shot from the delay laws, a
response signal is obtained. This analysis focuses on some of the most representative results to highlight the model
accuracy on each dataset. Figure 5 illustrate the measurements done on the simulation of the FBH1 series, for the shot
corresponding to the echo of maximum of amplitude.
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FIGURE 5. FBH1 Series - L45°- 25mm depth focusing - FBH @ 35,25,15mm (insonated defects for the law.)

Table 2 presents a summary of the accuracy validation realized on the new model against CIVA 11.0.
TABLE 2. Accuracy analysis summary.

FBH1 FBH2 Notch

AMax Delay law L45° - 35mm depth focusing L45° - 35mm depth focusing L45° - 30mm depth focusing

AMax gap CIVA/new model 0.2dB - 0.7dB 0.6dB - 0.8dB 0.6dB (GPP) - 0.9dB (GPU)

Time calibration <1 sample - OK <1 sample - OK <1 sample - OK

Those experiments all fall under 1dB from CIVA results, presenting a gap inferior to the requirements for passing
benchmarks against experimental results. Thus, it is possible to validate the new model and its implementations.

Performances

Those two implementations have been benchmarked on high end hardware to aim at a fair evaluation of perfor-
mances.

2× GPP Intel Xeon 5590. The machine contains 2 GPP, consisting each of 6 cores 3.47GHz with Hyperthreading
(12 logical cores for each GPP) ; it also disposes of 24GB of memory 1. This machine is also the one running CIVA
11.0 for reference.

NVidia GeForce GTX580. This high end, consumer grade, GPU disposes of 512 CUDA Cores running @1.544Ghz
each, and rely on the Fermi architecture. It disposes of 1.5GB of device memory2. The benchmarked performances
do not include GPU initialization nor the transfer of the result from the device back to the host (at most 200ms on
the studied cases). Those two elements are dismissed as this implementation is aimed at a fast simulation, memory
transfers to the host will be overlapped with computations and the GPU is only initialized once for the whole set.

Experiments. Impulse response simulation is run on the two architectures and on the three sets of data. To provide
a reference for current simulation platform performances, the dataset are also run on the CIVA 11.0 software which
rely on a general model. However, one has to notice that the CIVA 11.0 generic model is also benefits from multicore
architectures through multithreading.

Table 3 shows details of the performances on both implementations. On real data, both implementation of the
parallel model perform much faster than CIVA 11.0 generic model. It is noteworthy that most time is spent in signal
processing routines : in delay law application to extract field information and in echo impulse response generation.

On the GPP, the signal processing step is costly due to the sheer quantity of memory operations required for
computing FFT. Whereas on the GPU, the benefits from the higher parallelism through the cuFFT library are
compromised by the cost of the atomic operation required to perform the summation of multiple contributions on
a single signal.

1 The compiler used is Intel®C++ Composer XE 2013 Update 5 Integration for Microsoft Visual Studio 2010, Version 13.0.1211.2010
2 The CUDA implementation was compiled and executed with CUDA 5.0 toolkit



TABLE 3. Performances of full parallel implementations
against CIVA 11.0 generic model.

FBH-1 FBH-2 Notch

generic model (CIVA 11.0) 241 s 142 s 363 s

- - -

Fast GPP (CIVA Dev) 7.6 s 2.0 s 7.3 s

gain over generic model ×31.7 ×71.0 ×49.7

Fast GPU (CIVA Dev) 5.8 s 1.7 s 3.6 s

gain over fast GPP ×1.31 ×1.17 ×2.02

gain over generic model ×41.5 ×83.5 ×100.8

CONCLUSIONS

This paper describes a new UT inspection simulation tool relying on the computational power of massively parallel
architectures. This tool results have been validated on industrial use-cases through the QNDE 2013 benchmark by
comparison with the current version of the CIVA software. The new model using an analytical beam propagation
computation and computational regularity delivers an accurate simulation of the UT diffraction, under 0.8dB of
differences on the benchmark. However, it is restricted to simpler configurations : planar surfaces, isotropic and
homogeneous structures. By comparing its performances against CIVA11.0 generic model, the new model obtains
an accelerations from ×31 to ×70 on GPP whereas on the GPU, a gain of ×41 to ×101 is shown. The performances
shown with those first implementations indicate that interactive simulation is not out of range.

The current implementations are still limited to a subset of canonical configurations. Some extension should be
realized to address more configurations, for example : side drilled holes ; other diffraction models which can benefits
from the fast field and signal processing computations (GTD, SOV...) ; on the GPU, T mode computations.

Moreover, an analysis aimed at reducing the number of signal processing operations will be performed with the help
of CIVA knownledge.

Finally, multiple improvements can be sought to speedup each parallel implementation. For example, the use of
SIMD instruction on the GPP to benefit from its fine grained parallel abilities. Besides, by reducing the number of
atomic operations in the GPU implementation, performances can improve drastically on signal summation.

Those implementation are the first step toward a fast UT inspection integrated within the CIVA 12 software.
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