Improving the recognition of pathological voice using the discriminant HLDA transformation

Abstract : In this paper, we propose a simple and fast method for evaluating the pathological voice (esophageal) by applying the continuous speech recognition in a speaker dependent mode, on our own database of the pathological voice, we call FPSD (French Pathological Speech Database). The recognition system used is implemented using the HTK platform, based on HMM/GMM monophone models. The acoustic vectors are linearly transformed by the HLDA (Heteroscedastic Linear Discriminant Analysis) method to reduce their size in a smaller space with good discriminative properties. The obtained phone recognition rate (63.59 %) is very promising when we know that esophageal voice contains unnatural sounds, difficult to understand.
Type de document :
Communication dans un congrès
3rd International IEEE Colloquium on Information Science and Technology, Oct 2014, Tetuan-Chefchaouen, Morocco. 2014
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01093309
Contributeur : Joseph Di Martino <>
Soumis le : mercredi 10 décembre 2014 - 14:53:41
Dernière modification le : jeudi 11 janvier 2018 - 06:25:24
Document(s) archivé(s) le : mercredi 11 mars 2015 - 11:12:07

Fichier

article_cist2014_Lachhab_Othma...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01093309, version 1

Collections

Citation

Othman Lachhab, Joseph Di Martino, El Hassane Ibn Elhaj, Ahmed Hammouch. Improving the recognition of pathological voice using the discriminant HLDA transformation. 3rd International IEEE Colloquium on Information Science and Technology, Oct 2014, Tetuan-Chefchaouen, Morocco. 2014. 〈hal-01093309〉

Partager

Métriques

Consultations de la notice

1460

Téléchargements de fichiers

284