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Abstract— In this paper, we propose a simple and fast method 

for evaluating the pathological voice (esophageal) by applying the 

continuous speech recognition in a speaker dependent mode, on 

our own database of the pathological voice, we call FPSD (French 

Pathological Speech Database). The recognition system used is 

implemented using the HTK platform, based on HMM/GMM 

monophone models. The acoustic vectors are linearly 

transformed by the HLDA (Heteroscedastic Linear Discriminant 

Analysis) method to reduce their size in a smaller space with 

good discriminative properties.  The obtained phone recognition 

rate (63.59 %) is very promising when we know that esophageal 

voice contains unnatural sounds, difficult to understand. 

Keywords—Automatic Speech Recognition(ASR); HMM; HTK; 
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I.  INTRODUCTION  

Esophageal voice is a substitution voice learned by a 
laryngectomee, i.e. a person who has had his or her vocal folds 
removed, after total laryngectomy. This voice contains 
specific noises which make it difficult to understand. This 
noisy speech is produced by a sound generation process which 
consists in inhaling air into the pharynx and releasing it 
through the esophagus. The envelope of the waveform and 
spectral components of esophageal speech do not vary as well 
as those of laryngeal speech. Furthermore, the pitch of 
esophageal speech is lower and less stable than the pitch of 
laryngeal speech. Therefore, the analysis and extraction of F0 
processes fail. All these characteristics of esophageal speech 
cause a production of unnatural sounds. 

The recognition and evaluation of pathological voice 
(esophageal), is a sensitive subject, and the focus of many 
studies in the field of biomedical applications of speech 
technology [1] [2]. Esophageal speech can be assessed either 
by perception judgments or objective analysis techniques. The 
first type of analysis is the essential method used in clinical 
practice. It consists in qualifying the pathological voice quality 
by carefully listening to the patient. However, this method 
suffers from several drawbacks. Firstly, the perceptual 
judgment must be made by a jury of experts in order to 
increase its reliability. Secondly, this perceptual analysis is 
expensive in time and human resources and cannot be planned 
easily. On the contrary, the objective analysis [3] [4] is 
increasingly used. It is based on the analysis of acoustic, 

aerodynamic and physiological measures. These measures can 
be directly extracted from the speech signal using a computer 
system. This objective approach provides acceptable results, 
but is still insufficient to assess esophageal voice. 

The objective of this work is to propose a simple and fast 
method for evaluating the pathological voice (esophageal) by 
applying a continuous speech recognition system on our own 
FPSD (French Pathological Speech Database) database. Our 
recognition system designed for this specific task is 
implemented using the HTK platform [5], based on 
HMM/GMM monophone models. The feature vectors are 
linearly transformed by the HLDA (Heteroscedastic Linear 
Discriminant Analysis) method [6] to reduce their size in a 
smaller space which preserves the discriminant information. 

This paper is organized as follows: section 2 details how 
the previous and current works have attempted to improve the 
quality/recognition process of the pathological voices. The 
corpus used concerning the pathological voice, the HLDA 
transformation method and the recognition system are 
described in sections 3, 4 and 5 respectively. In section 6, we 
present the conducted experiments and the obtained results. 
Finally, section 7 provides a conclusion of this work. 

II. PREVIOUS AND CURRENT RESEARCH ON ENHANCING 

PATHOLOGICAL SPEECH 

The esophageal voice is a pathological voice which is 

difficult to understand because it is too far from a normal 

laryngeal voice. For this reason, several approaches for 

improving the quality of pathological voices have been 

attempted. One of them is whisper speech enhancement by a 

Code-Excited Linear Prediction (CELP) [14]. This approach 

uses an external prosthesis in order to allow a natural output 

voice. However, as it is difficult to generate realistic excitation 

signals, the resynthesized speech by such a method sounds 

artificial. Other attempts to enhance the pathological voices, 

based on the modification of their acoustic features, e.g. by 

using comb filtering [15], auditory masking [16], and formant 

synthesis [17], have been proposed. Although these techniques 

are useful to improve the quality of pathological speech, it is 

in practice difficult for them to compensate for the acoustic 

feature differences between pathological and laryngeal speech. 

 



Recently, alaryngeal speech enhancement based on 

statistical conversion methods has been proposed in [18]. This 

approach consists in using two parallel corpora, one related to 

the source (alaryngeal) voice and the other to the target 

(laryngeal) voice. These corpora contain the same phonetic 

information. A statistical transformation function is then 

calculated for converting the source speech signal, in a manner 

to be perceived as pronounced by the target speaker. 

Furthermore in order to control the quality of the converted 

speech, a new conversion method based on Eigen voice 

conversion (EVC) has been proposed. These conversion 

processes allow removing the specific noise and improving the 

intelligibility and quality of the alaryngeal speech.  

 

III. THE FPSD CORPUS  

 The corpora of pathological speech are relatively less 
numerous compared to those related to laryngeal speech. This 
is why we chose to design our own esophageal speech French 
database entitled FPSD (French Pathological Speech 
Database). This acoustic and phonetic database is dedicated to 
the recognition of pathological speech. It contains the 
recordings of 480 sentences spoken by one laryngectomee. 
These sentences are classified into 5 categories: 

C1) Sentences with one-syllable words. 

C2) Sentences with words of one and two syllables. 

C3) Sentences with words of three syllables. 

C4) Sentences with falling intonation. 

C5) Sentences with rising intonation. 

This database was divided into two parts: one for training 
containing 425 sentences and the other for the test containing 
55 sentences. 

 The file structure of the FPSD database is similar to the 
one used in the TIMIT corpus [7]. We have for each sentence, 
a wave file (.wav) sampled at 16 kHz (16 bits) with a single 
input channel, a file (.txt) containing the French text, a file 
(.wrd) containing the word transcription and a file (.phn) 
containing the phonetic segmentation. The manual 
segmentation we conducted is based on our experience in 
reading spectrograms, listening to the wave sounds, visual 
examination of the waveforms, and other parameters such as 
energy and formants. The labeling of the sentences was 
carried out using SAMPA [8] (Speech Assessment Methods 
Phonetic Alphabet) a phonetic alphabet that differs a little bit 
from the International Phonetic Alphabet (IPA), and which 
presents the advantage of using only simple ASCII characters. 
Table 1 gives a list of the 36 French phonetic labels used in 
our own FPSD database, with the IPA correspondence and 
examples.  

 

 

 

TABLE I.  SAMPA TRANSCRIPTION OF THE STANDARD FRENCH 

PHONES. 

IPA SAMPA Example IPA SAMPA Example 

p p pont [po~] j j ion [jo~] 

b b bon [bo~] m m mont [mo~] 

t t temps [ta~] n n nom [no~] 

d d dans [da~] ŋ N ring [riN] 

k k coût [ku] l l long [lo~] 

g g gant [ga~] ʁ R rond [Ro~] 

f f femme [fam] w w quoi [kwa] 

v v vent [va~] ɥ H juin [ZHe~] 

s s sans [sa~] i i si [si] 

z z zone [zOn] e e blé [ble] 

ʃ S champ [Sa~] ɛ E seize [sEz] 

ʒ Z gens [Za~] a a patte [pat] 

ɔ O comme [kOm] ø 2 deux [d2] 

o o gros [gRo] œ 9 neuf [n9f] 

u u doux [du] oẽ 9~ brun [br9~] 

y y du [dy] ẽ  e~ vin [ve~] 

ə @ de [d@] ã a~ vent [va~] 

sil - ou sil silence ɔ̃ o~ bon [bo~] 

 

IV. THE HLDA TANSFORMATION  

The objective of the discriminant transformation method 
used, the Heteroscedastic Linear Discriminant Analysis 
HLDA [6], consists in finding a projection space with a 
reduced dimension of the acoustic vectors. This projection 
space determined by the HLDA transform must preserve the 
discriminant information. This processing is based on a 
maximum likelihood estimation of a matrix M projecting 
linearly n-dimensional vectors to p-dimensional vectors with p 
≤ n. 

                                   XMY T
p                                 (1) 

 
In order to obtain the transformed data Y, we multiply the 

transformation matrix M
T
 of size (p x n) by the original data 

X. The iterative maximum likelihood algorithm [9] [12] is 
used in our experiment to estimate the matrix M. 

V. THE PHONE RECOGNITION SYSTEM 

A. Speech processing 

 The recognition system uses the Mel-Frequency Cepstral 
Coefficients MFCC [13] and energy, as well as the differential 
coefficients of these parameters. The speech signal is sampled 
at 16 KHz and pre-emphasized with a factor of 0.97. The 12 
static cepstral coefficients are calculated from a Hamming 
window of 25 ms shifted every 10 ms, obtained from a bank of 



26 Mel scale filters. The logarithm of the energy of the frame 
is added to the 12 cepstral coefficients in order to create a 
vector of 13 coefficients. We included also the differential 
coefficients of order 1, 2 and 3 called dynamic coefficients (∆, 
∆∆ and ∆∆∆) automatically using the parameterization of the 
HTK tool. So the acoustical vectors used have at most d = 52 
coefficients. Then the space dimension is reduced by the 
HLDA method applied on all the vectors (training and test) in 
order to obtain relevant and discriminant vectors with 39 
coefficients (d = 39) which represents the reference 
dimensionality used in most Automatic Speech Recognition 
(ASR) systems. 

B. Context-independent HMM training 

 The phone recognition system uses 36 phones described in 
Section 2 (see Table 1). These phones are represented by left-
to-right models HMM with five states (but only three of them 
are emitting observations). Fig. 1 illustrates the topology and 
the type of HMM used. The training of the models is the 
starting point of any (ASR) system and certainly the most 
crucial. It consists in determining the optimal parameters Ө = 
{A, πi, B}. 

 

 πi            : An initial state probability. 

 A = aij   : The probability of transition from state i to  

                  state j (A is a transition probability   

                  matrix). 

 B = bi(ot) : the matrix containing the distribution 

probability of emission the observation ot in state i. 

 

The output distribution bi(ot) for observing ot in state i is 

generated by a Gaussian Mixture Model (GMM) and more 

precisely by a mixture of multivariate Gaussian distribution 

probabilities Ɲ(ot,µik,Σik) of mean vector µik and covariance 

matrix Σik : 
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Where ni represents the number of Gaussians in state i, ot 

corresponds to an observation o at time t and cik represents the 

mixture weight for the kth
 
Gaussian in state i. The recognition 

system is developed using the platform HTK. For each HMM 

phonetic model, the Hinit tool initializes the emission 

probabilities of observations and state transitions through the 

"segmental k-means" iterative process based on the Viterbi 

algorithm. These parameters are further refined by an 

estimation of the maximum likelihood criterion MLE [10] 

calculated by the Baum-Welch algorithm using the HRest tool. 

The final learning phase consists in re-estimating 

simultaneously all of the models on continuous speech data 

using the HERest tool. 

 
Fig. 1. Topology of the context-independent phonetic HMM. 

 

It is important to choose the appropriate number of 

Gaussians associated to each state, by making a compromise 

between a good modeling of the phonetic HMM units and the 

limited number of training data. A too high number of 

Gaussians compared to the amount of available data leads to 

poor learning, because the training data has a limited number 

of samples for each phoneme. In our case we used 16 

Gaussians for each state except for the phoneme /N, which 

was used with at most 14 Gaussians for each state because of 

the small available data concerning this phoneme. 

C. Phone recognition 

The continuous speech recognition is a delicate process 
because we do not know the boundaries of the phones in the 
test sentences. In addition monophone HMM models assume 
that speech is produced as a concatenation of phones which 
are not affected by the phonetic contexts neighbors left/right 
and right/left (context-independent). In order to perform the 
recognition process, it is useful to determine the sequence of 
states that has generated the given observations. In fact, from 
the sequence of states, we can easily find the most probable 
phone string that match the parameters observed. This task is 
performed by the Viterbi decoding algorithm applied on each 
test sentences using the optimal parameters {A, πi, B} already 
estimated. A bigram language model is calculated on all of the 
training data to improve the decoding. 

VI. EXPERIMENTS AND RESULTS 

In order to evaluate the recognition of phones, we chose to 
perform our first tests on the TIMIT [7] database built from 
laryngeal read speech. We used the same labeling of 39 
phonetic classes described by K. F. Lee and H. W. Hon [11]. 
We conducted four experiments with the HTK recognition 
system to evaluate the contribution of differential coefficients 
and the HLDA transformation. In the first experiment we 
worked with acoustic vectors of dimension d = 39 (12 MFCC, 
E; 12 ∆MFCC, ∆E; 12 ∆∆ MFCC, ∆∆E) representing the 
reference dimensionality in most ASR systems. For the second 
experiment the derivative of order 3 (∆∆∆) is included in the 
space vectors to increase the number of coefficients to d = 52 
(12 MFCC, E; 12 ∆MFCC, ∆E; 12 ∆∆MFCC, ∆∆E; 12 
∆∆∆MFCC, ∆∆∆E). The third experiment consists in applying 
the discriminant transformation HLDA (39→39) on the 39 
feature vectors used in experiment 1 without dimension 



reduction. Whilst in the 4th and last experiment the number of 
52 coefficients used in experiment 2 is reduced to 39 
coefficients by the HLDA (52→39) transformation. We run all 
these experiments also on our FPSD database. Concerning this 
database, we use 36 phonetic labels described in section 2 (see 
Table 1). And for each state 16 Gaussians are used except for 
the phoneme /N which used only 14 Gaussians for each state. 
A bigram language model is calculated on the all of the 
training FPSD database containing 425 sentences, to improve 
the phone decoding on the esophageal voice. 

The recognition rate (Accuracy) of phones is calculated by 
Eq. 3, where N is the total number of labels of the test 
utterances and S, I and D (resp.) are the Substitution, Insertion 
and Deletion errors, computed by the DTW algorithm 
(Dynamic Time Warping) between the correct phone string 
and the recognized phone string.  
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The two tables, Table 2 and Table 3 present the phone 
recognition rates for the four experiments described above, 
respectively on the core test of the laryngeal voice TIMIT 
database, and the test part of our own FPSD database. 

We note that the results observed in experiment 4 provide a 
significant improvement in phone recognition rate (accuracy) 
compared to the other experiments. 

TABLE II.  INFLUENCE OF THE NUMBER OF DIFFERENTIAL COEFFICIENTS 

WITH THE HLDA TRANSFORMATION ON PHONE RECOGNITION RATES ON THE 

CORE TEST OF THE TIMIT DATABASE. 

39 monophone HMMs with 16 
Gaussians  per state+ Bigram 

Accuracy (%) Correct (%) 

Exp 1 : 39 MFCC coefficients  69.19 71.78 

Exp 2 : 52 MFCC coefficients  67.96 71.38 

Exp 3 : HLDA (39 →39) 70.24 72.77 

Exp 4 : HLDA (52 →39) 71.32 74.07 

TABLE III.  INFLUENCE OF THE NUMBER OF DIFFERENTIAL COEFFICIENTS 

WITH THE HLDA TRANSFORMATION ON PHONE RECOGNITION RATES ON THE 

TEST PART OF OUR OWN FPSD DATABASE. 

36 monophone HMMs with 16 
Gaussians per state + Bigram 

Accuracy (%) Correct (%) 

Exp 1 : 39 MFCC coefficients  61.89 67.62 

Exp 2 : 52 MFCC coefficients  58.49 65.29 

Exp 3 : HLDA (39 →39) 62.31 66.88 

Exp 4 : HLDA (52 →39) 63.59 69.43 

VII. CONCLUSION 

This paper, contributes to the continuous speech recognition of 

the pathological voice. Our ASR system based on context-

independent HMM/GMM models (monophone) exhibits a 

significant improvement in phone recognition accuracy (63.59 

%) by using the discriminant HLDA transformation and high 

order differential coefficients. These results are encouraging. 

Indeed, the performance of our system can be further 

improved by extending our FPSD corpus in order to use 

context-dependent HMM models (triphones). 
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