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Abstract. In this work we propose a new distance measure for compar-
ing two protein structures based on their contact map representations.
We show that our novel measure, which we refer to as the maximum
contact map overlap (max-CMO) metric, satisfies all properties of a
metric on the space of protein representations. Having a metric in that
space allows to avoid pairwise comparisons on the entire database and
thus to significantly accelerate exploring the protein space compared
to no-metric spaces. We show on a small gold-standard superfamily
classification benchmark set of 6, 759 proteins that our exact scheme
classifies up to 224 out of 236 queries correctly and on an larger, extended
version of the benchmark up to 1361 out of 1369 queries. Our k-NN
classification thus provides a promising approach for the automatic
classification of protein structures into SCOP or CATH based on flexible
contact map overlap alignments.

1 Introduction

Understanding the functional role and evolutionary relationships of proteins is
key to answering many important biological and biomedical questions. Because
the function of a protein is determined by its structure and because structural
properties are usually conserved throughout evolution, such problems can be
better approached if proteins are compared based on their representations as
three-dimensional structures rather than as sequences. Databases such as SCOP
[15] and CATH [16] have been built to organize the space of protein structures.

Both SCOP and CATH, however, are constructed based on manual curation,
and many of the currently over 90, 000 protein structures in the protein data bank
(PDB) [3] are still unclassified. Moreover, classifying a newly found structure
manually is both expensive in terms of human labor and slow. Therefore,
computational methods that can accurately and efficiently complete such
classifications will be highly beneficial. Basically, given a query protein structure,
the problem is to find its place in a classification hierarchy of structures, for
example, to predict its family or superfamily in the SCOP database.
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One approach to solving that problem is based on having introduced a
meaningful distance measure between any two protein structures. Then the
family of a query protein q can be determined by comparing the distances
between q and members of candidate families and choosing a family whose
members are “closer” to q than members of the other families, where the precise
criteria for deciding which family is closer depend on the specific implementation.
But the key condition and a crucial factor for the quality of the classification
result is having an appropriate distance measure between proteins.

Several such distances have been proposed, each having its own advantages.
Recently, a number of approaches based on a graph-based measure of closeness
called contact map overlap (CMO) [7] have been shown to perform well
[2, 4, 11, 12, 17, 19, 20]. Informally, CMO corresponds to the maximum size of
a common subgraph of the two contact map graphs, see the next section for
the formal definition. Although CMO is a widely used measure, none of the
CMO-based distance methods suggested so far satisfy the triangle inequality
and, hence, introduce a metric on the space of protein representations. Having a
metric in that space establishes a structure that allows much faster exploration
of the space compared to no-metric spaces. For instance, all previous CMO-
based algorithms require pairwise comparisons on the entire database, which
takes time quadratic to the size of the database. With the rapid increase of the
protein databases, such a strategy will unavoidably create performance problems
even if the individual comparisons are fast. On the other hand, as we show here,
the structure introduced in metric spaces can be exploited to significantly reduce
the number of needed comparisons for a query and thereby increase the efficiency
of the algorithm, without sacrificing the accuracy of the classification.

In this work we propose a new distance measure for comparing two protein
structures based on their contact map representations. We show that our novel
measure, which we refer to as the maximum contact map overlap (max-CMO)
metric, satisfies all properties of a metric. The advantages of nearest-neighbor
searching in metric spaces are well described in the literature [5, 13, 14]. We
use max-CMO in combination with an exact approach for computing the CMO
between a pair of proteins in order to classify protein structures accurately and
efficiently in practice. Specifically, we classify a protein structure according to the
k nearest neighbors with respect to the max-CMO metric. We demonstrate that
one can speed-up the total time taken for CMO computations by computing
in many cases approximations of CMO in terms of lower-bound upper bound
intervals, without sacrificing accuracy. We point out that our approach solves the
classification problem to provable optimality and that we do so without having
to compute all alignments to optimality. We show on a small gold-standard
superfamily classification benchmark set of 6, 759 proteins that our exact scheme
classifies up to 224 out of 236 queries correctly and on a large, extended version of
the data set that contains 67, 609 proteins even up to 1361 out of 1369. Our k-NN
classification thus provides a promising approach for the automatic classification
of protein structures into SCOP or CATH based on flexible contact map overlap
alignments.
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Amongst the other existing (non-CMO) protein structures comparison
methods we are aware of only one exploiting the triangle inequality. This is the so
called scaled Gauss metric (SGM) introduced in [18] and further developed in [9].
As shown in the above papers, their approach is very successful for automatic
classification. In this work, however, we focus on contact map overlap and a
comparison to classification algorithms based on different concepts is outside
the scope of this paper.

2 The maximum contact map overlap metric

We introduce here the notions of contact map overlap (CMO) and the related
max-CMO distance between protein structures. A contact map describes the
structure of a protein P in terms of a simple, undirected graph G = (V,E)
with vertex set V and edge set E. The vertices of V are linearly ordered and
correspond to the sequence of residues of P . Edges denote residue contacts, that
is, pairs of residues that are close to each other. More precisely, there is an
edge (i, j) between residues i and j iff the Euclidean distance in the protein fold
is smaller than a given threshold. The size |G| := |E| of a contact map is the
number of its contacts. Given two contact maps G1(V,E1) and G2(U,E2) for two
protein structures, let I = (i1, i2, . . . , im) and J = (j1, j2, . . . , jm) be subsets of
V and U , respectively, respecting the linear order. Vertex sets I and J encode an
alignment of G1 and G2 in the sense that vertex i1 is aligned to j1, i2 to j2 and
so on. In other words, the alignment (I, J), is a one-to-one mapping between the
sets V and U . Given an alignment (I, J), a shared contact (or common edge)
occurs if both (ik, il) ∈ E1 and (jk, jl) ∈ E2 exist. We say in this case that
the shared contact (ik, il) is activated by the alignment (I, J). The maximum
contact overlap problem consists in finding an alignment (I∗, J∗) that maximizes
the number of shared contacts and CMO(G1, G2) denotes then this maximum
number of shared contacts between the contact maps G1 and G2, see Figure 1.

v1 v2 v3 v4

u1 u2 u3 u4 u5

G1

G2

Fig. 1. The alignment visualized with dashed lines ((v1 ↔ u1)(v2 ↔ u2)(v3 ↔
u4)(v4 ↔ u5)) maximizes the number of the common edges between the graphs G1

and G2. The alignment activates four common edges that are emphasized in bold (i.e.,
CMO(G1, G2) = 4).

Computing CMO(G1, G2) is NP-hard [8]. Nevertheless, maximum contact
map overlap has been shown to be a meaningful way for comparing two protein
structures [2,4,11,12,17,19,20]. Previously, several distances have been proposed
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based on the maximum contact map overlap, for example, Dmin [4, 10, 17] and
Dsum [2, 12,17,20] with

Dmin(G1, G2) = 1− CMO(G1, G2)

min{|E1|, |E2|}
and Dsum(G1, G2) = 1− 2CMO(G1, G2)

|E1|+ |E1|
.

These distances have the disadvantage that they are no metrics as the following
lemma shows.

Lemma 1. Distances Dmin and Dsum do not satisfy the triangle inequality.

Proof. See the counterexample in Fig. 2 below.

v1 v2 v3 v4 v5 v6

u1 u2 u3 u4 u5 u6 w1 w2 w3 w4 w5 w6

x1 x2 x3 x4 x5 x6

G1

G2 G3

G4

Fig. 2. Consider graphs G1, . . . , G4. It is easily seen that CMO(G1, G2) =
1,CMO(G2, G3) = 3 and CMO(G1, G3) = 3. We then obtain: Dsum(G1, G2) =
1− 2

|E1|+|E2|
= 1− 2

6
= 2

3
, Dsum(G2, G3) = 1− 6

|E2|+|E3|
= 1− 6

8
= 1

4
, Dsum(G1, G3) =

1 − 6
|E1|+|E3|

= 1 − 6
8

= 1
4
. Hence Dsum(G1, G3) + Dsum(G3, G2) = 1

2
< 2

3
=

Dsum(G1, G2). Furthermore, CMO(G2, G4) = 1 and CMO(G3, G4) = 2. We then

obtain: Dmin(G2, G4) = 1− CMO(G2,G4)
min{|E1|,|E4|}

= 1− 1
3

= 2
3

and Dmin(G3, G4) = 1− 2
3

= 1
3
,

as well as Dmin(G2, G3) = 1− 3
3

= 0. Hence, Dmin(G2, G3) +Dmin(G3, G4) = 0 + 1
3
<

2
3

= Dmin(G2, G4).

Let G1(V,E1), G2(U,E2) be two contact maps graphs. We propose a new
distance

Dmax(G1, G2) = 1− CMO(G1, G2)

max{|E1|, |E2|}
. (1)

The following claim states that Dmax is indeed a distance (metric) on the
space of contact maps and we refer to it as the max-CMO metric.

Lemma 2. Dmax is a metric on the space of contact maps.

Proof. To prove the triangle inequality for the function Dmax, we consider three
contact maps G1(V,E1), G2(U,E2), G3(W,E3), and we want to prove that
Dmax(G1, G2) + Dmax(G2, G3) ≥ Dmax(G1, G3). We will use the fact that a
similar function dmax on sets is a metric, which is defined as

dmax(A,B) = 1− |A ∩B|
max{|A|, |B|}

. (2)
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The mapping M corresponding to CMO(G1, G2) generates an alignment
(V

′
, U

′
), where V

′ ⊆ V and U
′ ⊆ U are ordered sets of vertices preserving

the order of V and U , correspondingly. Since M is a one-to-one mapping, we
can rename the vertices of U ′ to the names of the corresponding vertices of V ′

and keep the old names of the vertices of U \ U ′. Denote the resulting ordered
vertex set by U and denote by E2 the corresponding set of edges. Define the
graph G2 = (U,E2). Note that |E2| = |E2| and any common edge discovered by
CMO(G1, G2) has the same endpoints (after renaming) in E2 as in E1; hence
CMO(G1, G2) = CMO(G1, G2) = |E1 ∩ E2|. Then from (2)

Dmax(G1, G2) = 1− CMO(G1, G2)

max{|E1|, |E2|}
= 1− |E1 ∩ E2|

max{|E1|, |E2|}
= dmax(E1, E2) .

Similarly, we compute the mapping corresponding to CMO(G2, G3) and generate

an optimal alignment (U ′ ,W
′
). As before, we use the mapping to rename the

vertices of W ′ to the corresponding vertices of U ′ and denote the resulting sets
of vertices and edges by W and E3. Similarly to the above case, it follows that
Dmax(G2, G3) = dmax(E2, E3). Combining the last two equalities, we get

Dmax(G1, G2) +Dmax(G2, G3) = dmax(E1, E2) + dmax(E2, E3)

≥ dmax(E1, E3). (3)

On the other hand, E1 ∩ E3 contains only edges jointly activated by the align-
ments (V

′
, U

′
) and (U ′ ,W

′
) and its cardinality is not larger than CMO(G1, G3),

which corresponds to the optimal alignment between G1 and G3. Hence
|E1 ∩ E3| ≤ CMO(G1, G3) and, since |E3| = |E3|,

dmax(E1, E3) = 1− |E1 ∩ E3|
max{|E1|, |E3|}

≥ 1− CMO(G1, G3)

max{|E1|, |E3|}
= Dmax(G1, G3).

Combining the last inequality with (3) proves the triangle inequality for Dmax.
The other two properties of a metric, that Dmax(G1, G2) ≥ 0 with equality if and
only if G1 = G2 and Dmax(G1, G2) = Dmax(G2, G1), are obviously also true. ut

If instead of CMO(G1, G2) one computes lower or upper bounds for its
value, replacing those values in (1) produces an upper or lower bound for Dmax,
respectively.

3 Nearest neighbor classification of protein structures

We suggest to approach the problem of classifying a given query protein structure
with respect to a database of target structures based on a majority vote of the
k nearest neighbors in the database. Nearest neighbor classification is a simple
and popular machine learning strategy with strong consistency results, see for
example [1].
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An important feature of our approach is that it is based on a metric and we
fully profit from all usual benefits when exploiting the structure introduced by
that metric. In addition, we also model each protein family in the database as a
ball with a specially chosen protein from the family as center, see Sect. 3.1 for
details. This allows to obtain upper and lower bounds for the max-CMO distance
in Sect. 3.2, which are used to define a new dominance rule we call triangle
dominance that proves to be very efficient. Finally, we describe in Sect. 3.3 how
these results can be used in a classification algorithm.

3.1 Finding superfamily representatives

In order to minimize the number of targets with which a query has to
be compared directly, i.e., via computing an alignment, we designate a
representative central structure for each family. Let d denote any metric. Each
family F ∈ C can then be characterized by a representative structure RF and a
family radius rF determined by

RF = arg min
A∈F

max
B∈F

d(A,B), rF = min
A∈F

max
B∈F

d(A,B). (4)

In order to find RF and rF , we compute, during a preprocessing step, all
pairwise distances within F . We aim to compute these distances as precise as
possible, using a sufficiently long run time for each pairwise comparison. Since
proteins from the same family are structurally similar, the alignment algorithm
performs favorably and we can usually compute inter-family distances optimally.

3.2 Dominance between target protein structures

In order to find the target structures which are closest to a query q, we have
to decide for a pair of targets A and B which one is closer. We call such a
relationship between two target structures dominance:

Definition 1 (dominance). Protein A dominates protein B with respect to a
query q if and only if d(q, A) < d(q,B).

In order to conclude that A is closer to q than B, it may not be necessary
to know d(q, A) and d(q,B) exactly. It is sufficient that A directly dominates B
according to the following rule.

Lemma 3 (direct dominance). Protein A dominates protein B with respect
to a query q if d(q, A) < d(q,B), where d(q, A) and d(q,B) are an upper and
lower bound on d(q, A) and d(q,B), respectively.

Proof. Follows from the inequalities d(q, A) ≤ d(q, A) < d(q,B) ≤ d(q,B). ut

Given a query q, a representative r and a target A, the triangle inequality
provides an upper bound, while the reverse triangle inequality provides
respectively a lower bound on the distance from query q to target A

d(q, A) ≤ d(q, r) + d(r,A) and d(q, A) ≥ |d(q, r)− d(r,A)| . (5)
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We define the triangle upper (resp. lower) bound as

d
4

(q, A) = min
r∈R

d(q, r) + d(r,A) ,

d5(q,A) = max
r∈R

max{d(q, r)− d(r,A), d(r,A)− d(q, r)} .

Lemma 4. d5(q,A) ≤ d(q, A) ≤ d4(q, A)

Proof. d5(q, A) = maxr∈R max{d(q, r) − d(r,A), d(r,A) − d(q, r)} ≤
maxr∈R |d(q, r)−d(r,A)| ≤ d(q,A) ≤ minr∈R d(q, r)+d(r,A) ≤ minr∈R d(q, r)+

d(r,A) = d
4

(q, A). ut

Using Lemma 4 we derive supplementary sufficient conditions for dominance,
which we call indirect dominances.

Lemma 5 (indirect dominance). Protein A dominates protein B with respect

to query q if d
4

(q, A) < d5(q,B).

Proof. d(q,A)
Lemma 4
≤ d

4
(q, A) < d5(q,B)

Lemma 4
≤ d(q,B). ut

3.3 Classification algorithm

K-nearest neighbor classification is a scheme which assigns the query to the class
to which most of the k targets belong which are closest to the query. In order to
classify, we therefore need to determine the k structures with minimum distance
to the query and assign the superfamily to which the majority of the neighbors
belong. As seen in the previous section, we can use bounds to decide whether a
structure is closer to the query than another structure. This can be generalized
to deciding whether or not a structure can be among the k closest structures in
the following way. We construct two priority queues LB and UB whose elements
are (t, lb(q, t))) and (t, ub(q, t)), respectively, where q the query and t the target.
Here lb(q, t) is any lower bound on the distance between q and t, for example
d(q, t) or d5(q, t) and ub(q, t) is any upper bound on d(q, t), for example d(q, t)
or d4(q, t). LB and UB are sorted in the order of increasing distance. The k-th
element in queue UB is denoted by tUB

k . Its distance to the query, d(q, tUB
k ), is the

distance for which at least k target elements are closer to the query. Therefore
we can safely discard all those targets which have a lower bound distance of
more than d(q, tUB

k ) to query q. That is, tUB
k dominates all targets t for which

d(q, t) > d(q, tUB
k ).

We assume that distances between family members are computed optimally5,
i.e. d(A,B) = d(A,B) = d̄(A,B) if A,B ∈ F . The algorithm also works if this
is not the case, then d(A,B) needs to be replaced by d(A,B) or d(A,B) at the
appropriate places.

5 This is actually done in our preprocessing step when computing the family
representatives.
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Table 1. For every protein class, the table lists the number of structures in SCOPCath
(str) and extended SCOPCath (ext), the corresponding number of families (fam) and
superfamilies (sup).

class a b c d e f g h i j k

# str 1195 1593 1774 1591 30 103 342 72 11 38 10
# ext 10796 19215 17497 15679 349 1006 2398 520 43 81 25
# fam 524 516 548 632 6 59 121 32 5 29 8
# sup 303 266 191 375 6 52 82 31 5 29 8

4 Experimental setup

We evaluated the classification performance and efficiency of different types of
dominance of our algorithm on domains from SCOPCath [6], a benchmark that
consists of a consensus of the two major structural classifications SCOP [15]
(version 1.75) and Cath [16] (version 3.2.0). We use this consensus benchmark
in order to obtain a gold-standard classification that very likely reflects structural
similarities that are detectable automatically, since two classifications, each using
a mix of expert knowledge and automatic methods, agree in their superfamily
assignments. SCOPCath has been filtered such that it only contains proteins with
less than 50% sequence identity. Since this results in a rather small benchmark
with only 6, 759 structures, we added these filtered structures for our evaluation
in order to have a benchmark representative of the merged databases SCOP and
Cath. There were 264 domains which share more than 50% sequence similarity
with a domain in SCOPCath, but do not belong to the same SCOP family
as this representative; we removed these domains from the extended data set.
This way we obtained 60, 850 additional structures. These belong to 1, 348
superfamilies and 2, 480 families of which 2, 093 families have more than one
member. For SCOPCath, there are 1, 156 multi-member families. Structures
and families are divided into classes according to Table 1. For superfamily
assignment, we compared a structure only to structures of the corresponding
class since class membership can in most cases be determined automatically,
for example by a program that computes secondary structure content. We then
computed all-versus-all distances (2) within each family and determined the
family representative according to Equation (4). Usually, the distance between
family members was computed optimally, in the cases in which not, we used the
lower bound on the distance instead.

For classification, we randomly selected one query from every family with at
least six members. This resulted in 236 queries for SCOPCath and 1, 369 queries
for the extended SCOPCath benchmark. For every query, the k = 10 nearest
neighbor structures from SCOPCath and extended SCOPCath, respectively,
were computed using our k-NN Algorithm (1). The algorithm is a two-step
procedure. First it improves bounds by applying several rounds of triangle
dominance, for which the alignment from query to representatives is computed,
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and second it switches to pairwise dominance, for which the alignment to any
remaining target is computed. In the first step, query representative alignments
are computed using an initial time limit of τ = 1s, then triangle dominance is
applied to all targets and the algorithm iterates with time limit doubled until
a termination criterion is met. This way, bounds on query target distances are
improved successively. The computation of triangle dominance terminates if any
of the following holds (i) k targets are left (ii) all query-representative distances
have been computed optimally or with a time limit of 32 CPU seconds (iii)
the number of targets did not reduce from one round to the next. Pairwise
dominance terminates if any of the following holds (i) k targets are left or all
remaining targets belong to the same superfamily (iii) all query-target distances
have been computed with a time limit of 32 CPU seconds. The query is then
assigned to the superfamily to which the majority of the k nearest neighbors
belongs. In cases in which the pairwise dominance terminates with more than k
targets or more than one superfamily remains, the exact k nearest neighbors are
not known. In that case we order the targets based on the upper bound distance
to the query and assign the superfamily using the top ten queries. In the case
that there is a tie among the superfamilies to which the top ten targets belong,
we report this situation.

In order to investigate the impact of k on classification accuracy, we
additionally decreased k from 9 to 1, using each time the k+1 nearest neighbors
from the classification result for k + 1. In the case that for a query more than
k + 1 queries remained in this classification, we used all of them for searching
for the k nearest neighbors, but put an additional termination criterion if the
number of structures after 2 or more iterations of pairwise dominance exceeds a
given number. Otherwise, for few queries which needed an extremely long run
time for k = 10, for most k again such a long run time would have to be spend.

5 Computational results

5.1 Characterizing the distance measure

In a first, preprocessing step we evaluate how well our distance metric captures
known similarities and differences between protein structures by computing
intra-family and inter-family distances. A good distance for structure comparison
should pool similar structures, i.e., from the same family, whereas it should
locate dissimilar structures from different families far apart from each other.
In order to quantify such characteristics, we compute for each family with at
least two members a central, representative structure according to Equation (4).
Therefore, we compute the distance between any two structures that belong to
the same family. Such intra-family distances should ideally be small. We observe
that the distribution of intra-family distances differ between classes and are
usually smaller than 0.5, except for class c. For the four major protein classes,
there is a distance peak close to 0 and another one around 0.2. For the four
major protein classes, they are visualized in Figure 3.
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Algorithm 1 Solving k-NN classification problem

1: q // Query structure.

2: T // Set of target structures.

3: RF ∀F ∈ C // Family representatives, see (4).
4: d(A,RF ) ∀A ∈ F for all families F ∈ C // Distance from all family members

to the respective representative.

5: d(q,RF ), d(q,RF ) ∀F ∈ C // Bounds on the distance from the query to the

family representatives.

6: LB ← {(t,−∞)|t ∈ T } // Priority queue which will hold the targets t in

the order of increasing lower bound distance d5(q, t) to the query.

7: UB ← {(t,∞)|t ∈ T } // Priority queue which will hold the targets t in

the order of increasing upper bound distance d4(q, t) to the query.

8: tUB
k // A pointer to the k-th element in UB

9: τ ← 1s // Time limit for pairwise alignment.

10: for F ∈ C do
11: FAM[F ]← |{t ∈ T : t belongs to family F}| // Number of family members.

12: end for
13: while ∃RF : d(q,RF ) 6= d(q,RF ) and |T | changes do
14: τ ← τ× 2
15: for F ∈ C with FAM[F ] > 0 do
16: Recompute d(q,RF ) and d(q,RF ) using time limit τ
17: for t ∈ F do
18: Update priority of t in LB to d5(q, t) = |d(q,RF )−d(RF , t)| // Bound from

inverse triangle inequality (5).
19: Update priority of t in UB to d4(q, t) = d(q,RF )+d(RF , t). // Bound from

triangle inequality (5).
20: end for
21: // Check for targets dominated by tUB

k .

22: for target t in T do
23: if d5(q, t) > d4(q, tUB

k ) then
24: T ← T \ t
25: LB ← LB\t
26: UB ← UB\t
27: FAM[F ]← FAM[F ]− 1 where F the family of t.
28: end if
29: end for
30: end for
31: if |T | = k then
32: return The majority superfamily membership S among T .
33: end if
34: end while
35: Apply the “common” dominance protocol for query q and targets T .
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Fig. 3. Histograms of inter-family distances divided by class.
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We then compute a radius around the representative structure that
encompasses all structures of the corresponding family. The number of families
with a given radius decreases nearly linearly from 0 to 0.6, with most families
having a radius close to zero, and almost no families having a radius greater 0.6.
The histogram of family radii is visualized in Figure 4.
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Fig. 4. A histogram of the radii of the multi-member families.

Considering that the distance metric is bound to be within 0 and 1, inter-
family distances and radii show that the distance overall captures well the
similarity between structures. Further, we investigate the distance between
protein families by computing their overlap value as defined by d(rF1

, rF2
) −

rF1 − rF2 . Most families are not close to each other according to our distance
metric. Families of the four most populated classes which belong to different
superfamilies overlap in 23-25% of cases for class a, 11-18% for class b, 10-
22% for class c and 11-18% for class d. These bounds on the number of
overlapping families can be obtained by using the lower and upper bounds on
the distances between representatives and the distances between family members
appropriately.

5.2 Results for SCOPCath benchmark

When classifying the 236 queries of SCOPCath, we achieve between 89 and 95%
correct superfamily assignments, see Table 3. Remarkably, the highest accuracy is
reached for k=1, so here just classifying the query as belonging to the superfamily
of the nearest neighbor is the best choice. Our k-NN classification resulted for
any k in a large number of ties, especially for k=2, see Table 3. These currently
unresolved ties also decrease assignment accuracy compared to k = 1, for which
a tie is not possible. Table 3 further lists the number of queries which have
been assigned, where exact denotes that the provable k nearest neighbors have
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been computed. The percentage of exactly computed nearest neighbors varies
between 50 and 99 % and increases with decreasing k. A likely reason for this is
that the larger k, the weaker is the k-th distance upper bound that is used for
domination, especially if the target on rank k is dissimilar to the query. Since
SCOPCath domains have low sequence similarity, this is likely to happen. It is
also interesting to note that there are for any k quite a few queries which have
been assigned exact, but which are nonetheless wrongly assigned, see Table 3.
These are cases in which our distance metric fails in ranking the targets correctly
with respect to gold standard.

Table 2. Classification results showing the number of queries out of overall 236 queries
that have been assigned to a superfamily, the number of correct assignments, the
number of assignments computed exactly, thereof the number of correct classifications
and the number of ties which do not allow a family assignment based on majority vote.

k 10 9 8 7 6 5 4 3 2 1

# correct 210 211 213 213 214 217 217 219 213 224
# exact 117 143 156 165 188 206 204 211 209 234
# exact & correct 110 134 149 155 178 198 195 205 206 224
# ties 10 9 11 8 10 10 10 10 20 0

Figure 5 displays the progress of our algorithm in terms of percentages of
removed targets. We initially compute six rounds of triangle dominance, starting
with 1 CPU s for every query representative alignment and doubling the run time
every iteration up to 32 CPU s. The same is done in the pairwise dominance
step of the algorithm, in which we compute the distance from the query to every
remaining target. As shown in Figure 5, the percentage of dominated targets
within each iteration varies widely between queries, which results in a large
variance of run times between queries. For some queries, up to 80% of targets
can be removed by just computing the distance to the family representatives
using a time limit of 1s and applying triangle dominance, for others, even after
several iterations of pairwise dominance, 50% of targets remain. Overall, most
queries need, after triangle dominance, several iterations of pairwise dominance
before being assigned and quite a few even cannot be assigned exactly.

5.3 Results for extended SCOPCath benchmark

Our exact k-NN classification can also be successfully applied to larger
benchmarks like extended SCOPCath, which are more representative of
databases such as SCOP. Here, the benefit of using a metric distance,
triangle inequality and k-NN classification is more pronounced. Remarkably, our
classification run time on this benchmark that is about an order of magnitude
larger than SCOPCath is for most queries of the same order of magnitude as
run times on SCOPCath (except for some queries which need an extremely long



14 Wohlers et al.

1 2 3 4 5 6
0

20

40

60

80

100

%

triangle dominance

1 2 3 4 5 6
iteration

0

20

40

60

80

100

%

pairwise dominance

Fig. 5. Boxplots of the percentage of removed targets at each iteration during triangle
and pairwise dominance for the 236 queries of the SCOPCath benchmark.

run time and finally cannot be assigned exactly). Also here, run time varies
extremely between queries, between 0.15 and 85.63 hours for queries of the four
major classes which could be assigned exactly. The median run time for all 1120
exactly assigned extended SCOPCath queries is 3.8 hours. The classification
results for extended SCOPCath are shown in Table 3. Slightly more queries have
been assigned correctly compared to SCOPCath and significantly more queries
have been assigned exactly. Both may reflect that there are now more similar
structures within the targets. Further, the number of ties is decreased. Figure 6

Table 3. Classification results showing the number of queries out of overall 1369 queries
that have been assigned to a superfamily, the number of correct assignments, the
number of assignments computed exactly, thereof the number of correct classifications
and the number of ties which do not allow a family assignment based on majority vote.

k 10 9 8 7 6 5 4 3 2 1

# correct 1303 1331 1334 1341 1341 1346 1344 1351 1348 1361
# exact 1120 1182 1228 1271 1286 1339 1341 1352 1347 1368
# exact & correct 1104 1166 1215 1257 1276 1329 1330 1341 1343 1360
# ties 35 5 12 6 11 7 9 3 17 0

displays the progress of the computation. Here, many more target structures are
removed by triangle dominance and within the very first iteration of pairwise
dominance compared with the SCOPCath benchmark. For example, for most
queries, more than 70% of targets are removed by triangle dominance alone. Only
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very few queries need to explicitly compute the distance to a large percentage
of the targets, and almost 75% of queries can be assigned after only one round
of pairwise dominance.
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Fig. 6. Boxplots of the percentage of removed targets at each iteration during triangle
and pairwise dominance for the 1369 queries of the extended SCOPCath benchmark.

6 Discussion

The difficulty to optimally compute a superfamily assignment using k-NN
increases with the dissimilarity of the k-th closest target and the query, because
this target determines the domination bound. This can be observed in the
different number of exactly assigned queries between SCOPCath and extended
SCOPCath on the one side and for different k on the other side. Since SCOPcath
has been filtered for low sequence identity, we can expect that the k-th neighbor
is less similar to the query than the k-th neighbor in extended SCOPCath, and
therefore, it is easier to compute extended SCOPCath exactly. Accordingly, the
number of exactly assigned queries tends to increase with decreasing k. In future
work, we may use such properties of the distance bounds to decide which k is
most appropriate for a given query.

Our exact classification is based on a well-known property of exact CMO
computation: similar structures are quick to align, and usually computed exactly,
whereas dissimilar structures are extremely slow to align and usually not exactly.
Therefore, we remove dissimilar structure early using bounds. Similar structures
can then be computed (near-)optimal and the resulting k-NN classification is
exact.
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Although current results suggest that in terms of assignment accuracy, using
only the nearest neighbor for classification works best, finding the k nearest
neighbor structures is still interesting and important. A new query structure
is in need of being characterized, and a set of k closest structures from a given
classification gives a good impression on its location in structure space, especially
if this space is metric. Note that, besides using the presented algorithm for
determining the k nearest neighbors, it could straightforwardly also be used to
find all structures within a certain distance threshold of a given query.

We show that our approach is beneficial for handling large data sets whose
structures form clusters in some metric space because it can quickly discard
dissimilar structures using metric properties such as triangle inequality. This
way, the target data set does not need to be reduced previously using a different
distance measure such as sequence similarity, which can lead to mistakes. Our
classification is at all times only based on structural distance.

The disadvantage of heuristics for the task of large-scale structure classifica-
tion is that these classifications are not stable. As versions of tools or random
seeds change, the distance between structures may change, since the provable
distance between two structures is not known. With these distance changes,
also the entire classification may change. Such possible, unpredictable changes
in classification contradict the essential use of an automatic classification as a
reference.

7 Conclusion

In this work we introduced a new distance based on the CMO measure and
proved that it is a true metric, which we call the max-CMO metric. We analyzed
the potential of max-CMO for solving the k-NN problem efficiently and exactly
and built on that basis a protein family classification algorithm. Depending on
the values of k, our accuracy varies between 89 % for k = 10 and 95 % for k = 1
for the SCOPCath benchmark. The fact that the accuracy is highest for k = 1
indicates that using more sophisticated rule than k-NN may produce even better
results. We also leave a thorough comparison to classification algorithms based
on different concepts for further work.

In summary, our approach provides a general solution to k-NN classification
based on a computationally intractable metric for which upper and lower bounds
are available that can successfully be applied for exact large-scale protein
superfamily classification.
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