Machine Learning for Neuroimaging with Scikit-Learn

Abstract : Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.
Type de document :
Article dans une revue
Frontiers in Neuroscience, Frontiers, 2013, pp.15. 〈10.3389/fninf.2014.00014〉
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01093971
Contributeur : Alexandre Abraham <>
Soumis le : jeudi 11 décembre 2014 - 14:28:42
Dernière modification le : jeudi 29 mars 2018 - 10:32:02
Document(s) archivé(s) le : samedi 15 avril 2017 - 08:02:11

Fichiers

frontiers.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Alexandre Abraham, Fabian Pedregosa, Michael Eickenberg, Philippe Gervais, Andreas Muller, et al.. Machine Learning for Neuroimaging with Scikit-Learn. Frontiers in Neuroscience, Frontiers, 2013, pp.15. 〈10.3389/fninf.2014.00014〉. 〈hal-01093971〉

Partager

Métriques

Consultations de la notice

562

Téléchargements de fichiers

1064