F. Pereira, T. Mitchell, and M. Botvinick, Machine learning classifiers and fMRI: A tutorial overview, NeuroImage, vol.45, issue.1, pp.199-209, 2009.
DOI : 10.1016/j.neuroimage.2008.11.007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892746

M. Mur, P. A. Bandettini, and N. Kriegeskorte, Revealing representational content with pattern-information fMRI???an introductory guide, Social Cognitive and Affective Neuroscience, vol.4, issue.1, pp.101-109, 2009.
DOI : 10.1093/scan/nsn044

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656880

T. Hastie, R. Tibshirani, and J. J. Friedman, The elements of statistical learning, 2001.

K. J. Millman and M. Brett, Analysis of Functional Magnetic Resonance Imaging in Python, Computing in Science & Engineering, vol.9, issue.3, pp.52-55, 2007.
DOI : 10.1109/MCSE.2007.46

K. Gorgolewski, C. D. Burns, C. Madison, D. Clark, Y. O. Halchenko et al., Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python, Frontiers in Neuroinformatics, vol.5, 2011.
DOI : 10.3389/fninf.2011.00013

S. Van-der-walt, S. C. Colbert, and G. Varoquaux, The NumPy Array: A Structure for Efficient Numerical Computation, Computing in Science & Engineering, vol.13, issue.2, pp.22-30, 2011.
DOI : 10.1109/MCSE.2011.37

URL : https://hal.archives-ouvertes.fr/inria-00564007

J. D. Hunter, Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, vol.9, issue.3, pp.90-95, 2007.
DOI : 10.1109/MCSE.2007.55

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, p.2825, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann et al., The WEKA data mining software, ACM SIGKDD Explorations Newsletter, vol.11, issue.1, pp.10-18, 2009.
DOI : 10.1145/1656274.1656278

M. Hanke, Y. O. Halchenko, P. B. Sederberg, S. J. Hanson, J. V. Haxby et al., PyMVPA: a Python Toolbox for Multivariate Pattern Analysis of fMRI Data, Neuroinformatics, vol.12, issue.1, pp.37-53, 2009.
DOI : 10.1007/s12021-008-9041-y

S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr et al., The SHOGUN Machine Learning Toolbox, Journal of Machine Learning Research, vol.11, p.1799, 2010.

J. Schrouff, M. J. Rosa, J. Rondina, A. Marquand, C. Chu et al., PRoNTo: Pattern Recognition for Neuroimaging Toolbox, Neuroinformatics, vol.67, issue.1, 2013.
DOI : 10.1007/s12021-013-9178-1

K. Friston, Statistical parametric mapping: the analysis of functional brain images, 2007.

S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E. Behrens et al., Advances in functional and structural MR image analysis and implementation as FSL, NeuroImage, vol.23, pp.208-219, 2004.
DOI : 10.1016/j.neuroimage.2004.07.051

T. Naselaris, K. N. Kay, S. Nishimoto, and J. L. Gallant, Encoding and decoding in fMRI, NeuroImage, vol.56, issue.2, pp.400-410, 2011.
DOI : 10.1016/j.neuroimage.2010.07.073

J. V. Haxby, I. M. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten et al., Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex, Science, vol.293, issue.5539, p.2425, 2001.
DOI : 10.1126/science.1063736

S. J. Hanson, T. Matsuka, and J. V. Haxby, Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a ???face??? area?, NeuroImage, vol.23, issue.1, pp.156-166, 2004.
DOI : 10.1016/j.neuroimage.2004.05.020

G. Detre, S. Polyn, C. Moore, V. Natu, B. Singer et al., The multi-voxel pattern analysis (mvpa) toolbox. Poster presented at the Annual Meeting of the Organization for Available at, Human Brain Mapping, 2006.

O. Toole, A. J. Jiang, F. Abdi, H. Pénard, N. Dunlop et al., Theoretical, Statistical, and Practical Perspectives on Pattern-based Classification Approaches to the Analysis of Functional Neuroimaging Data, Journal of Cognitive Neuroscience, vol.33, issue.11, pp.1735-1752, 2007.
DOI : 10.1126/science.1598577

S. J. Hanson and Y. O. Halchenko, Brain Reading Using Full Brain Support Vector Machines for Object Recognition: There Is No ???Face??? Identification Area, Neural Computation, vol.17, issue.11, pp.486-503, 2008.
DOI : 10.1016/S0896-6273(02)00877-2

N. Kriegeskorte, R. Goebel, and P. Bandettini, Information-based functional brain mapping, Proceedings of the National Academy of Sciences, vol.103, issue.10, pp.3863-3868, 2006.
DOI : 10.1073/pnas.0600244103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1383651

Y. Miyawaki, H. Uchida, O. Yamashita, M. Sato, Y. Morito et al., Visual Image Reconstruction from Human Brain Activity using a Combination of Multiscale Local Image Decoders, Neuron, vol.60, issue.5, pp.915-929, 2008.
DOI : 10.1016/j.neuron.2008.11.004

R. Tibshirani, Regression shrinkage and selection via the Lasso, J.R. Statist. Soc, vol.58, pp.267-288, 1996.

B. Efron, T. Hastie, L. Johnstone, and R. Tibshirani, Least angle regression, Annals of Statistics, vol.32, pp.407-499, 2004.

B. Biswal, F. Zerrin-yetkin, V. Haughton, and J. Hyde, Functional connectivity in the motor cortex of resting human brain using echo-planar mri, Magnetic Resonance in Medicine, vol.13, issue.4, p.53719, 1995.
DOI : 10.1002/mrm.1910340409

S. Smith, P. Fox, K. Miller, D. Glahn, P. Fox et al., Correspondence of the brain's functional architecture during activation and rest, Proceedings of the National Academy of Sciences, vol.106, issue.31, p.13040, 2009.
DOI : 10.1073/pnas.0905267106

V. Kiviniemi, J. Kantola, J. Jauhiainen, A. Hyvärinen, and O. Tervonen, Independent component analysis of nondeterministic fMRI signal sources, NeuroImage, vol.19, issue.2, p.253, 2003.
DOI : 10.1016/S1053-8119(03)00097-1

V. D. Calhoun, T. Adali, G. D. Pearlson, and J. J. Pekar, A method for making group inferences from functional MRI data using independent component analysis, Human Brain Mapping, vol.2, issue.3, p.140, 2001.
DOI : 10.1002/hbm.1048

G. Varoquaux, S. Sadaghiani, P. Pinel, A. Kleinschmidt, J. B. Poline et al., A group model for stable multi-subject ICA on fMRI datasets, NeuroImage, vol.51, issue.1, p.288, 2010.
DOI : 10.1016/j.neuroimage.2010.02.010

URL : https://hal.archives-ouvertes.fr/hal-00489507

C. F. Beckmann and S. M. Smith, Probabilistic Independent Component Analysis for Functional Magnetic Resonance Imaging, IEEE Transactions on Medical Imaging, vol.23, issue.2, pp.137-152, 2004.
DOI : 10.1109/TMI.2003.822821

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Hyvärinen and E. Oja, Independent component analysis: algorithms and applications, Neural Networks, vol.13, issue.4-5, 2000.
DOI : 10.1016/S0893-6080(00)00026-5

G. Varoquaux, A. Gramfort, F. Pedregosa, V. Michel, and B. Thirion, Multi-subject Dictionary Learning to Segment an Atlas of Brain Spontaneous Activity, Inf Proc Med Imag, pp.562-573, 2011.
DOI : 10.1007/978-3-642-22092-0_46

URL : https://hal.archives-ouvertes.fr/inria-00588898

B. Thirion, G. Flandin, P. Pinel, A. Roche, P. Ciuciu et al., Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets, Human Brain Mapping, vol.22, issue.8, p.678, 2006.
DOI : 10.1002/hbm.20210

V. Michel, A. Gramfort, G. Varoquaux, E. Eger, C. Keribin et al., A supervised clustering approach for fMRI-based inference of brain states, Pattern Recognition, vol.45, issue.6, p.2041, 2012.
DOI : 10.1016/j.patcog.2011.04.006

URL : https://hal.archives-ouvertes.fr/inria-00589201

R. Craddock, G. James, I. Holtzheimer, P. Hu, X. Mayberg et al., A whole brain fMRI atlas generated via spatially constrained spectral clustering, Human Brain Mapping, vol.22, issue.Pt 1, 2011.
DOI : 10.1002/hbm.21333

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838923

G. Varoquaux and R. C. Craddock, Learning and comparing functional connectomes across subjects, NeuroImage, vol.80, p.405, 2013.
DOI : 10.1016/j.neuroimage.2013.04.007

URL : https://hal.archives-ouvertes.fr/hal-00812911