AN EFFICIENT FILTERED SCHEME FOR SOME FIRST ORDER HAMILTON-JACOBI-BELLMAN EQUATIONS

Abstract : We introduce a new class of "filtered" schemes for some first order non-linear Hamilton-Jacobi-Bellman equations. The work follows recent ideas of Froese and Oberman (SIAM J. Numer. Anal., Vol 51, pp.423-444, 2013). The proposed schemes are not monotone but still satisfy some -monotone property. Convergence results and precise error estimates are given, of the order of √ ∆x where ∆x is the mesh size. The framework allows to construct finite difference discretizations that are easy to implement, high–order in the domains where the solution is smooth, and provably convergent, together with error estimates. Numerical tests on several examples are given to validate the approach, also showing how the filtered technique can be applied to stabilize an otherwise unstable high–order scheme.
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01094261
Contributeur : Olivier Bokanowski <>
Soumis le : vendredi 12 décembre 2014 - 09:20:05
Dernière modification le : mercredi 21 mars 2018 - 18:56:46
Document(s) archivé(s) le : samedi 15 avril 2017 - 08:06:22

Fichiers

Bokanowski_Falcone_Sahu_prepri...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01094261, version 1

Collections

Citation

Olivier Bokanowski, Maurizio Falcone, Smita Sahu. AN EFFICIENT FILTERED SCHEME FOR SOME FIRST ORDER HAMILTON-JACOBI-BELLMAN EQUATIONS . 2014. 〈hal-01094261〉

Partager

Métriques

Consultations de la notice

213

Téléchargements de fichiers

439