
HAL Id: hal-01094300
https://inria.hal.science/hal-01094300

Submitted on 12 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timing Attack against Protected RSA-CRT
Implementation Used in PolarSSL

Cyril Arnaud, Pierre-Alain Fouque

To cite this version:
Cyril Arnaud, Pierre-Alain Fouque. Timing Attack against Protected RSA-CRT Implementation Used
in PolarSSL. Topics in Cryptology - CT-RSA 2013, Mar 2013, San Francisco, United States. pp.16,
�10.1007/978-3-642-36095-4_2�. �hal-01094300�

https://inria.hal.science/hal-01094300
https://hal.archives-ouvertes.fr

Timing Attack against protected RSA-CRT
implementation used in PolarSSL

Cyril Arnaud1 and Pierre-Alain Fouque2

1 École de l’Air,
cy.arnaud@orange.fr
2 Université Rennes 1

pierre-alain.fouque@ens.fr

Abstract. In this paper, we present a timing attack against the RSA-
CRT algorithm used in the current version 1.1.4 of PolarSSL, an open-
source cryptographic library for embedded systems. This implementation
uses a classical countermeasure to avoid two previous attacks of Schindler
and another one due to Boneh and Brumley. However, a careful analysis
reveals a bias in the implementation of Montgomery multiplication. We
theoretically analyse the distribution of output values for Montgomery
multiplication when the output is greater than the Montgomery constant,
R. In this case, we show that an extra bit is set in the top most significant
word of the output and a time variance can be observed. Then we present
some proofs with reasonable assumptions to explain this bias due to
an extra bit. Moreover, we show it can be used to mount an attack
that reveals the factorisation. We also study another countermeasure
and show its resistance against attacked library.

Keywords: Side-channel attacks, timing attacks, embedded device security,
cryptography research

1 Introduction

The implementation of light-weight open-source cryptographic libraries is an
important security issue. In this paper, we study timing attacks on the current
version, 1.1.4, of the open source library PolarSSL [1] which is a well-known
library, widely used in embedded systems. We look at the security of the expo-
nentiation used in PolarSSL which is similar to the one used in OpenSSL [2] but
presents some differences.

There are mainly three timing attacks [[3,4,5], on the RSA with Chinese Re-
mainder Theorem (CRT) using Montgomery multiplication (MM). In the latter
algorithm, a conditional branch leaks some information about the modulus and
if RSA-CRT is used, the modulus is a prime factor of the RSA modulus N . These
attacks were performed without blinding and can be applied to the version of
Montgomery multiplication which contains a final conditional subtraction, called

2 Cyril Arnaud and Pierre-Alain Fouque

extra-reduction, for reducing the output. A classical and efficient countermea-
sure consists in using dummy operations to make the time computation constant
in the Montgomery implementation.

In this work, we study the dummy operation countermeasure used to avoid
these three attacks and we propose an efficient practical chosen-ciphertext attack
on this countermeasure used in PolarSSL. First, we show that even though the
extra-reduction is not visible, since the dummy operations mask them, when
the ouput of Montgomery multiplication before any conditional subtraction is
greater than R, an extra-bit is set and the computation takes more time when
the output is less than R. Then we study the probability of an extra bit in
Montgomery multiplication and we show how to exploit it by mounting an attack.

Our paper is organized as follows : §2 describes the different algorithms used
to compute efficiently the exponentiation operations. We also recall how the
previous attacks operate and the countermeasures that were proposed to defeat
these attacks. In §3, we describe the specifications of the PolarSSL exponenti-
ation implementations, we also show that some bias is still present in the time
computation and we explain the probability of an extra bit. In §4, our attack
details are addressed, and §5 presents our experimental results. We investigate
possible countermeasures in §6. We conclude our paper in §7.

2 Background

2.1 Montgomery multiplication

First proposed by Montgomery in [6], the MM algorithm provides an efficient
method for computing modular multiplications (given q an odd integer and two
integers a, b ∈ Zq, we compute ab mod q) and squaring (a2 mod q).

In this subsection, we describe a generic multi-precision variant of MM. Long
integers are represented as a sequence of words, the size of words is denoted by
w. Let r = 2w and s =

⌈
|Q|
w

⌉
represents the number of required words of size w.

Large integers are written in basis r, and we note digits in lowercase. Thus, those
numbers have the forms A =

∑i=s−1
i=0 air

i = (as−1, ..., a0)r, B = (bs−1, ..., b0)r,
Q = (qs−1, ..., q0)r, where 0 ≤ ai, bi, qi < r. Let R = rs and µ0 = − 1

q0
mod r. Big

number library implement a w-bit multiplication used during the multiplication
of a word with a large integer, which is denoted by ⊗w. Multi-precision variant
of MM is described in figure 1.

In order to use MM all variables must first be converted in Montgomery rep-
resentation Ā(= AR mod Q) by computing multimontmul(A, R2, Q) = Ā. At
the end, the result of the algorithm can be converted to classical representation
by performing multimontmul(A, 1, Q) = A mod Q.

In line 8 of multimontmul, the conditional subtraction, Z = Z − Q , is
called an extra-reduction. It is occasionally carried out to ensure that the result
Z is in the range [0, Q) and causes a timing difference. Timing attacks [3,4,5]
detect the timing difference according to the extra-reduction is executed or not.
In fact, Schindler [3] showed that the probability of an extra-reduction occurs in

Timing Attack against PolarSSL 3

1: function multimontmul(A, B, Q)
2: Z = (zs, ..., z0)r ← 0
3: for i = 0 to s− 1 do
4: u← ((z0+ai×b0)×µ0) mod r
5: Z ← (Z + ai ⊗w B)
6: Z ← (Z + u⊗w Q) div r

7: if Z ≥ Q then Z ← Z −Q

8: return Z (= ABR−1 mod Q)

Fig. 1: MM Multi-precision vari-
ant. A,B < Q.

1: function montmul(A, B, Q)
2: Z = (z2s, ..., z0)r ← 0
3: for i = 0 to s− 1 do
4: u← (zi + ai × b0)× µ0
5: (z2s, ..., zi)← ((z2s, ..., zi)+ ai⊗w B)
6: (z2s, ..., zi)← ((z2s, ..., zi) + u⊗w Q)
7: zi ← ai

8: G← (z2s, ..., zs)
9: if G ≥ Q then

10: sub(G, Q, s) ◃ Extra-reduction
11: else
12: sub(Z, G, s) ◃ defence

13: return G (= ABR−1 mod Q)

Fig. 2: POLARSSL’s Montgomery Mul-
tiplication multi-precision with counter-
measure. A,B < Q.

multimontmul(X̄, B, W), where B is uniformly distributed in Zq, is:

P (extra-reduction in mont(X̄, B,Q)) =
X̄ mod Q

2R
(1)

According to (1), when X̄ rises and approaches a multiple of Q, the probability
of an extra-reduction increases. At exact multiples of Q, the probability of an
extra-reduction is null.

2.2 Modular exponentiation algorithm : sliding window

MM is particularly interesting when it is combined with the modular exponenti-
ation algorithm to compute m = cd mod q. OpenSSL[2] and PolarSSL[1] use an
optimization of the square-&-multiply algorithm. This algorithm, called Sliding
Windows Exponentiation (SWE), considers block of bits of the exponent rather
than bits. The exponent d is split into windows of size wsize (depending on the
size of d), where the windows are not always contiguous. Different ways are avail-
able for choosing windows. As shown in figure 3, SWE requires a precomputed
table which is computed before the exponentiation process. During the modular
exponentiation phase (computing M̄), this table is used to process wsize bits of
d at each iteration. In both phases of SWE (precomputation phase and expo-
nentiation), the MM is used.

2.3 Decryption of RSA with Chinese Remainder Theorem

Let N = PQ be a n-bit RSA modulus, where P and Q are prime numbers. The
public key is denoted by (N , e) and the associated private key by (D, P , Q). RSA
decryption consists in computing a modular exponentiation M = CD mod N ,
where C is the ciphertext to decrypt. A well-known optimization of this op-
eration is the RSA-CRT which takes advantage of the decomposition in prime

4 Cyril Arnaud and Pierre-Alain Fouque

factor of N . Then, RSA-CRT reduces the computation time by a factor of about
75%. The RSA-CRT,with Garner’s recombination, is shown in figure 4. The at-
tacked implementations compute lines (2) and (3) using the SWE exponentiation
algorithm.

1: function exponent(C, D, Q)
2: if C ≥ Q then
3: C ← C mod Q

4: C̄1 ← mont(C, R2, Q)
5: Precomputing table phase
6: Modular exponentiation phase
7: M ← mont(M̄, 1, Q)
8: return M (= CD mod Q)

Fig. 3: Sliding window exponentiation.

1: function RSA-CRT(C, D, P, Q)
2: Cp ← CDp mod P
3: Cq ← CDq mod Q
4: T ← (Cq − Cp)π mod Q
5: M ← TP + Cp

6: return M (= CD mod N)

Fig. 4: RSA-CRT decryption.
Dp = D mod (P − 1), Dq = D mod
(Q−1) and π = P−1 mod Q are pre-
computed.

General idea of timing attacks on RSA-CRT. According to (1), during
the modular exponentiation, if two chosen ciphertext X and Y are decrypted,
when X̄ < Ȳ < Q the total number of extra-reductions is greater than the case
of X̄ < Q < Ȳ . So, by detecting time difference to perform the decryption of X̄
and Ȳ with RSA-CRT, we can reduce the search space of Q.

Overview of known timing attacks on RSA-CRT. We focus on two at-
tacks [5,4] against OpenSSL 0.9.7 without using any blinding countermeasure.
OpenSSL implements four optimizations for RSA decryption : CRT, SWE, MM
and two multiplication procedures, normal and Karatsuba’s algorithm. OpenSSL
performs Karatsuba’s multiplication when multiplying two integers of the same
number of words, otherwise uses normal routine. Karatsuba is faster than normal
multiplication. The two attacks exploit the factorization of the RSA modulus by
exploiting the time variance of RSA-CRT decryption in OpenSSL which de-
pends on the number of extra-reductions in MM and the choice of multiplication
procedure. The attacks perform a binary search to find the bits of Q bit-by-bit.

In [5], Boneh and Brumley show that the effect of extra-reductions and Karat-
suba depends on the position of the bit being recovered. Thus, there is a pre-
vailing parameter which has an influence on the time variance. Two ways are
explored for recovering a bit of Q. In [5], timing attack exploits MM which are
carried out during the modular exponentiation phase of SWE while [4] exploits
those are carried out during the precomputation phase.

Boneh and Brumley [5] propose two countermeasures to make RSA-CRT
decryption time independent on the input ciphertext. The first one is to use only
one multiplication procedure. The other one is to carry out a dummy subtraction
if an extra-reduction is not needed. The result of dummy operation is not used.
This approach is also suggested by Schindler [3].

Timing Attack against PolarSSL 5

3 PolarSSL’s implementation of RSA-CRT decryption

PolarSSL [1] is a light-weight open source cryptographic and SSL/TLS library
written in C. PolarSSL is implemented for embedded systems and has also been
ported to Windows and Linux (32 and 64 bit). The PolarSSL implementation
of RSA decryption uses, as optimization, the CRT, SWE and MM with defence.
We describe the last two algorithms below.

3.1 Montgomery multiplication multi-precision

PolarSSL implements only one procedure for computing the MM and accepts
multiplication for w = 8, 16, 32, or 64. PolasSSL’s MM multi-precision is given
in figure 2, where function sub(X,Y, s) returns X ← X − Y for the s least
significant words. In this case, the division of Z by r is performed by bumping a
counter on Z. After s iterations, the s+1 most significant words of Z are equals
to ABR−1 mod Q and the s least significant words to A.

In the following, we assume that for fixed parameters Q and r the running
times to perform lines 8 to 13 are identical for all inputs. It is worth noticing
that if an extra-reduction is not needed, a dummy subtraction is carried out (line
12). Those two operations (lines 10 and 12), subtractions on s words, take the
same time to be performed. Moreover, we check that compiler optimizations do
not remove the conditional branch. In all cases, the study of the assembly code
reveals that the dummy subtraction is still present for all compiler optimizations.

In this paper we perform a cryptanalysis based on the conditions under which
G is greater than R before any conditional subtraction is performed.

3.2 Timing variation in PolarSSL’s Montgomery multiplication
multi-precision

The dummy subtraction is used in montmul(A,B, Q) to make the time required
to perform the multiplication independent on the A and B operands. For more
clarity, we study the behaviour of the generic Montgomery multiplication multi-
precision figure 1.

Theorem 1. [10] For inputs 0 ≤ A,B < Q, multimontmul(A,B,Q) returns
the ouput Z ≡ ABR−1 mod Q satisfying ABR−1 ≤ Z < Q+ABR−1 before any
conditional subtraction.

We suppose that R
2 < Q < R. This assumption is true for standard RSA

key lengths, such as 512, 1024 or 2048 bits, but also when these lengths are a
multiple of world size. In this case, theorem 1 implied that Z < 2R. Moreover,
if the value of Z is greater than R then the value of the top most word of Z is
1, i.e. zs = 1, this bit is called extra bit.

In the source code of the multiplier, a while loop propagates a carry until no
further carry is generated. Then, if the output Z is greater than R, during the
sth computation of line 6 of figure 1, the while loop is used to carry propagation
up to the top most word of Z. Thus, a timing difference, whether the extra bit
is carried out or not, could allow an attacker to mount a timing attack.

6 Cyril Arnaud and Pierre-Alain Fouque

We performed experiments to show if an attacker could observe a timing dif-
ference in montmul. We generated two random numbers A, B with known size,
converted in Montgomery representation, and a prime number Q where R

2 < Q <
R. We sort the time in CPU’s clock ticks to perform montmul(A,B, Q) accord-
ing to the size numbers and if an extra bit, an extra-reduction without extra
bit or neither of them is carried out. The delay observed, Figure 5, to carry out
Z before any conditional subtraction confirmed explanation above about tim-
ing difference. For the whole of montmul(A,B, Q) we observed the same delay
between curves. Thus, extra-reduction, if Q ≤ Z < R, was actually masked by
the dummy subtraction. However, the delay was smaller than the bias observed
in previous attacks and it was proportional to the bitsize of Q, noted |Q|. In
addition, compiler optimisation did not affect delay between curves.

 504
 505

 506
 507

 508
 509

 510
 511

 512 504 505 506 507 508 509 510 511 512

 1900
 1910
 1920
 1930
 1940
 1950
 1960
 1970
 1980
 1990

T
im

e
 i
n

 C
P

U
´

c
y
c
le

s

Z<Q
R<Z

Q<Z<R

A size
B size

T
im

e
 i
n

 C
P

U
´

c
y
c
le

s

(a) |Q| = 512

 1016
 1017

 1018
 1019

 1020
 1021

 1022
 1023

 1024 1016 1017 1018 1019 1020 1021 1022 1023 1024

 4740

 4760

 4780

 4800

 4820

 4840

 4860

 4880

 4900
T

im
e

 i
n

 C
P

U
´

c
y
c
le

s

Z<Q
R<Z

Q<Z<R

A size
B size

T
im

e
 i
n

 C
P

U
´

c
y
c
le

s

(b) |Q| = 1024

Fig. 5: montmul(A, B,Q) without any conditional subtraction (w = 64 bits).

3.3 The Probability of an extra bit

Here we study the distribution of extra bit in MM algorithm inside the modular
exponentiation algorithm. We investigate the distribution for some cases and
we show that the probability for an extra bit is different for a squaring opera-
tion (Psquare), for a multiplication with two random A and B (Pmul) and for a
multiplication with a particular value C ∈ ZQ (PC).

First of all, to establish the probability distribution for the MM output Z
after s iterations (figure 1), three reasonable assumptions are made :

1. Q is large and so we can switch from discrete to continuous method,
2. Colin D. Walter [11] showed that during an exponentiation, inputs to MM

are uniformly distributed mod Q and independent,
3. for inputs A and B to MM during an exponentiation, the output Z be-

fore the conditional subtraction is uniformly distributed over the interval
[ABR−1, Q + ABR−1) [11].

Timing Attack against PolarSSL 7

Lemma 1. During the exponentiation, for input 0 ≤ A,B < Q, the probability
of an extra bit is not null if and only if Q >

√
5−1
2 ×R .

Proof (of lemma 1). According to assumptions (2) and theorem 1, we obtain
ABR−1 ≤ Z < Q + Q2R−1 . An extra bit is set if and only if Z ≥ R after s
iterations. Then, if an extra bit is set, R ≤ Z < Q + Q2R−1 . This inequality is
true if and only if Q2R−1 +Q−R > 0, solving for Q we obtain Q >

√
5−1
2 ×R .

⊓⊔

Lemma 2. During the exponentiation, for input 0 ≤ A,B < Q and C ∈ ZQ

fixed, the probability of an extra bit is :

1. Pmul =

{
Q
4R + (R−Q)2R

Q3 × (3
4 + 1

2 log(Q2

(R−Q)R))− (R−Q)
R if Q >

√
5−1
2 ×R

0 otherwise

2. Psquare =

{
Q
3R + 2(R−Q)

√
(R−Q)R

3Q2 − (R−Q)
R if Q >

√
5−1
2 ×R

0 otherwise

3. PC =

{
C
2R + (R−Q)2R

2CQ2 − (R−Q)
R if C > (R−Q)R

Q and Q >
√

5−1
2 ×R

0 otherwise

The proof is in appendix 2.

If Q → R, then the probability of an extra bit for a squaring, for a mul-
tiplication with random numbers and for a multiplication with a particular
value in montmul tends to 1

3 , 1
4 and C

2R respectively. On the other hand, for
Q→

√
5−1
2 ×R, these probabilities tend to 0.

Corollary 1. For Q >
√

5−1
2 × R and X, Y ∈

(
(R−Q)R

Q , Q
)
, if X > Y then

PX > PY .

Proof (of corollary 1). Let f a function denoted by :

f :

(
(R−Q)R

Q
,Q

)
→ (0, 1)

C 7→ C

2R
+

(R−Q)2R
2CQ2

− (R−Q)
R

∀ C > (R−Q)R
Q , f ′(C) = 1

2R −
1

C2 × (R−Q)2R
2Q2 > 0 .

Then f is strictly increased in interval
(

(R−Q)R
Q , Q

)
. Thus if X, Y within this

interval with X > Y then PX > PY .
⊓⊔

8 Cyril Arnaud and Pierre-Alain Fouque

3.4 Sliding window exponentiation

In this subsection we treat a variant of SWE, a fixed window exponentiation
(fixedexponent) which is used in PolarSSL. It differs from the SWE in OpenSSL.
In PolarSSL, the precomputation table phase computes C̄1 which is the cipher-
text in Montgomery representation, C̄2wsize−1

1 with successive wsize− 1 squares
of C̄1, and stores in the table C̄i = montmul(C̄1, C̄i−1, Q), for i = (2wsize−1+1)
to (2wsize−1). In the modular exponentiation, a block of bits (only one or wsize)
of D are processed at each iteration. The secret exponent D is split into windows
of fixed size wsize (depending on the size of D) where the most significant bit is
1. We denote by wd the value of the window. This window is used to carry out
M̄ = montmul(M̄, C̄wd

, Q) during an iteration of the modular exponentiation
phase.

For fixed Q and D and according to lemma 2, the number of extra bits in
modular exponentiation phase of fixedexponent(C, D, Q) is constant and in-
dependent of ciphertext input C. However, using lemma 2, numbers of extra bits
depend on C̄1 which is equal to CR mod Q. According to corollary 1, the secret
modulus Q can be found by using a chosen ciphertext.

It is worth noticing that Schindler’s attack fails while Boneh and Brumley
timing attack [5] should work against PorlarSSL’s RSA-CRT.

4 A timing attack on PolarSSL

In this section, we will suppose the size of RSA modulus is equal to 512, 1024,
or 2048 bits. The precomputing table phase of SWE in modulo Q requires
2wsize−1 − 1 (from 1 to 32) MM with C̄1, i.e. ciphertext in Montgomery rep-
resentation. Therefore, we exploit these operations in our attack. Because of the
bias in PolarSSL’s Montgomery multiplication is very small, we also use efficient
statistical hypothesis tests such as F-test and T-test in our attack model.

4.1 Two-sample hypothesis testing

Two-sample hypothesis testing is a method estimating two independent samples
parameters which are extracted from two populations.

An F-test is used to test equal variance of the two populations. The value
generated by F-test, Fobserved, is used to verify the timing sampling correctness.
In some case, we invalidate some erroneous measurements due to the noise of
other processes running on the machine. The F-test is :

Fobserved =
n1

n1−1s1
2

n2
n2−1s2

2,
(2)

where n1, n2 are sample sizes and s1
2, s2

2 are the sample variances. Let Fα is
the critical value of the F-distribution with (n1 − 1, n2 − 1) degrees of freedom

Timing Attack against PolarSSL 9

and a significance level α. If Fobserved > Fα then variances of the population are
different.

In two-sample t-test, we compare two independent sample means from two
populations with a same variance. The value generated by T-test, Tobserved, is
used in the decision strategy for recovering bit. The two-sample t-test is :

Tobserved =
(x̄1 − x̄2)− d0

Sp

√
1

n1
+ 1

n2

, (3)

where Sp
2 =

(n1 − 1)s1
2 + (n2 − 1)s2

2

n1 + n2 − 2
,

where x̄1 and x̄2 are the sample means. Let tα is the critical value of the Student’s
t distribution with (n1 +n2− 2) degrees of freedom and a significance level α. If
the means of the two samples are right, Tobserved is less than Tα, otherwise greater
than the critical value. Furthermore, we define a parameter Tβ to increase the
correctness of guess.

4.2 Our attack method

Let N be an RSA modulus with N = pq, q < p, |N | = n and |q| = |p| = n/2. To
factorize N , it is enough to recover the half most significant bits of p or q, since
Coppersmith’s [7] algorithm allows one to recover the complete factorisation of
N. However, our method allows us to recover around the n/2−log2(NS)−1 most
significant bits of modulus, where the parameter NS is called the neighbourhood
size and used to increase statically the bias (for more details about NS refer
to [5]).Thus, our attack ensures the recovery of bits of p or q one at a time, from
most significant to least. Let q = (1, q1, ..., qn

2−1) is the binary coded of q and
assume that the attacker knows the k most significant bits of q. We recover qk

as follows :

– Step 1 : Generate g and gh where g = (1, q1, , ..qk−1, 0, . . . , 0) and gh =
(1, q1, , ..qk−1, 1,, 0). If qk = 1 then g < gh < q, otherwise g < q < gh .

– Step 2 : For j = 0 to NS − 1 compute uj = (g + j)R−1 mod N and uhj =
(gh + j)R−1 mod N . The parameter neighbourhood size, i.e. NS, depend
on experiment parameters.

– Step 3 : For j = 0 to NS−1 measure the time to decrypt both uj and uhj .
Let Tuj = Time(RSA−CRT (uj , d, p, q)) and Tuhj

= Time(RSA−CRT (uhj ,
d, p, q)). We obtain two groups.

– Step 4 : Take a time sampling of the two groups, noted ζu and ζuh
.

– Step 5 : Compute Fobserved of ζu and ζuh
. If Fobserved > Fα, we assume that

timing samples are invalidated. So, we replay step 3.
– Step 6 : Find the largest interval t in ζu and ζuh

where Fobserved ≈ 1.
– Step 7 : Compute Tobserved of ζu and ζuh

, in interval t. If Tobserved < Tα,
the attacker assumes that qk = 1. Otherwise, if Tobserved > Tβ , we fixed
empirically Tβ = 10, then qk = 0. If Tα < Tobserved < Tβ , we assume that
timing samples are invalidated and we replay step 3.

10 Cyril Arnaud and Pierre-Alain Fouque

Unlike Boneh and Brumley [5], our attack does not need a particular phase to
determine the first few bits: the attack begins with g = (1, 0, ..., 0) and recovers
p or q.

An optimization of step 3 was to carry out only one of the two samples ζu

and ζuh
. Indeed, one of sample of the previous recovering bit could be reused

during the recovering process. If we guessed that qk = 0 (resp. qk = 1) then
we reused ζu (resp. ζuh

) during the decision process of the next bit. Thus, the
number of chosen ciphertext was divided by two. However, we carried out the
two samples ζu and ζuh

when these timing samples are invalidated.

5 Experimental results

We performed our attack against the latest version 1.1.4 of PolarSSL with coun-
termeasure (dummy subtraction). All of the experiments presented were run
under Ubuntu 12.04 LTS 64 bits on an Intel Core i7. We compiled, using GCC
4.6.3, PolarSSL with its default value : -D FILE OFFSET BITS=64 -O. We gener-
ated randomly all keys with PolarSSL’s key generation routine. To get an accu-
rate time measurement of RSA-CRT decryption, we used Time Stamp Counter
(TSC) and Performance Monitor Counters (PMC).

5.1 Time measurement

A well known method for measuring time is the TSC[8], a 64-bit register, which
counts front side bus ticks and multiplies it by the CPU’s frequency. The TSC is
available on Intel CPU since introduction of the Pentium. This counter is read
using the rdtsc assembly instruction which is not a privilege operation.
Our experiments were performed on a multi-core platform which compromised
the use of the TSC registers. Thus, we implemented another way too.

PMC[8] provides the capability to monitor performance events and measure
ticks for each core. Every PMC has a number which allows it to be referenced.
PMC are supported by Model Specific Register (MSR). MSR are specific to a
particular CPU which store data and set information for the CPU. PMC can be
read using rdmsr while wrmsr writes to an MSR. We used these instructions to
store ticks values for a chosen core. These instructions must be executed using
privilege ring 0. Then, we need to use a kernel driver.

5.2 Experimental results

In this subsection, we present the result of four experiments with the three sizes
of modulus : 512, 1024 and 2048 bits. In each case, we showed that recovering
half of the most significant bits of a prime factor is possible with a success
probability around 100%. The first two experiments were performed in the same
computing process. We measured directly the time to perform RSA-CRT for a
chosen ciphertext. These experiments ensured we check the effectiveness of our
statistical choices and the accuracy of using PMC. The last two experiments

Timing Attack against PolarSSL 11

were obtained in inter-process in nature, and via TCP socket. We implemented
a simple TCP server and client with the two processes ran on the same machine
(server and client). The TCP server read a binary string sent by the client
which is in PolarSSL’s multi-precision representation. When it completed the
decryption of the RSA-CRT, it returned 0 to the client. The TCP client measured
the time between sending a message and receiving a response.

We attacked several random keys to determinate the efficiency of our method.
The size of neighbourhoods was gained empirically. We denote by ∆0 = mean(ζu)−
mean(ζuh

) when qi is 0 and ∆1 when it is 1. Due to Karatsuba’s multiplication,
in [5,4] the decryption time during RSA-CRT is variable (depending on the
weight of recovering bit) when in PolarSSL is quite stable.

These different experiments demonstrated that our statistical tests are reli-
able and suitable for timing attack. Moreover, measuring time with PMC made
our attack more efficient.

Experiment 1 - Same process with RTDSC instruction In this experiment,
we measured the time to perform RSA-CRT with RDTSC instruction. Table 1
shows when the key size increases, the ratio of replay becomes higher. The de-
cryption time computing rises with the key size because of noise since other
processes penalize our attack.

Table 1 also shows that the ∆0 for qi = 0 depends on the modulus size.
The delay between Montgomery multiplication with and without extra bit is
increased by a factor of 2 for q’s size 512 and 1024 bits. When we perform RSA-
CRT with a 1024-bit (resp. 2048-bit) modulus, the size of the window in SWE
is 5 (resp. 6). Then, the precomputation table phase of SWE requires 15 (resp
31) MM. In the experiments, a factor of four between ∆0 for 1024 and 2048 bits
modulus is expected.

Table 1: Results of our attack with RDTSC. We measure timing computation in
the same process.

Modulus size NS ratio of replay ∆0 ∆1 Number of query

512 bits 600 2% 2614 -90 78600
1024 bits 800 18% 5553 -134 241600
2048 bits 1000 50% 21855 -1743 768000

Experiment 2 - Same process with RDMSR instruction In this experiment
we show, in table 2, that for the same size of neighbourhood, the noise due to
other processes running in the computer do not interfere too much with our
attack. When we use PMC for measuring ticks, we read time for our process
core. Thus, processes running on other cores do not penalize the timing attack.

12 Cyril Arnaud and Pierre-Alain Fouque

Table 2: Results of our attack with the RDMSR. We measure timing computation
in the same process.

Modulus size NS ratio of replay ∆0 ∆1 Number of query

512 bits 600 2% 2452 67 78600
1024 bits 800 10% 4554 −216 225600
2048 bits 1000 15% 22434 −992 589000

Experiment 3 - Inter-process with RTDSC instruction Table 3 shows that
communication via inter-process does not reduce the effectiveness of our attack.
The noise from inter-process is eliminated by increasing the size of neighbour-
hood, given similar ∆0 and ratio of replay.

Table 3: Results of our attack with RDTSC. We measure timing computation in
inter-process via TCP.

Modulus size NS ratio of replay ∆0 ∆1 Number of query

512 bits 1000 2% 2537 -144 131000
1024 bits 1100 21% 5557 -1489 341000
2048 bits 1200 55% 28157 1042 952800

Experiment 4 - Inter-process with RDMSR instruction In this experiment
we use processor affinity which allows us to choose the core/CPU where a process
is running. Thus, the TCP client and server are carried out on different cores.
Table 4 shows that the ratio of replay in inter-process attack is very low when
we used RDMSR instruction.

Table 4: Results of our attack with RDMSR. We measure timing computation in
inter-process via TCP.

Modulus size NS ratio of replay ∆0 ∆1 Number of query

512 bits 1000 0% 2217 -1 128000
1024 bits 1100 5% 5067 -675 295900
2048 bits 1200 10% 17033 872 675600

Timing Attack against PolarSSL 13

When we used RDMSR in inter-process we were able to recover a 1024 bits
key with an average of 215200 queries. These results are obtained with 800
neighbourhoods and a ratio of replay is around 5%.

5.3 Network attacks

Two ways are performed to measure timing decryption of RSA-CRT during inter-
process attack. In [5], Boneh and Brumley show that it is enough to increase
neighbourhood to convert an inter-process into a network timing attack. Thus
using RTDSC instruction, we should be able to factorise N by measuring the time,
from sending the ciphertext on the network and to receiving the response of the
server.

Another way is also possible. Assume that an attacker is able to perform a
spy process on the server, operating at a high level. The TCP client performs the
ciphertext to be decrypted and sends the message. The spy sniffs TCP socket on
the server and measure the time, using RDMSR instruction, taken by the server
for answering. Once this is completed, the spy process sends the measurement
to the client which is responsible for the decision of bit to recover. This scenario
should have the same result as RDMSR in inter-process.

In the real world scenario the experimental data is limited. However, in Po-
larSSL’s SSL implementation the key does not have timelife, only the SSL’s
session (lifetime is one day in PolarSSL’s example). Our attack in inter-process
with a 1024 key size takes about ten minutes. So, the attack presented in our
paper seems to be feasible in the real world.

6 Defences

PolarSSL’s library is vulnerable during our timing attack. In order to counteract
it, we could make constant the time decryption of the RSA-CRT implementation.
The attack results show that it is very complicated to obtain an implementation
with those characteristics for any key size. In order to protect PolarSSL against
this attack, three countermeasures can be developed in this section. The first
one is used by OpenSSL and we suggested two others.

6.1 Blinding

This defence makes the time decryption of RSA-CRT independent on the input
ciphertext. RSA-CRT blinding is implemented as follows.

Let a is a random value, e the RSA encryption exponent and c the ciphertext.
To decrypt c :

– compute : x = ae.c mod N ,
– decrypt x : RSA− CRT (x, d, p, q) = m′ = aedcd mod N ,
– compute : m′

a mod N = aed−1cd mod N = cd mod N = m.

Since a is random, then x is a random value. Then, the attacker can not choose
the ciphertext being input to MM. This approach is preferred by Boneh and
Brumley [5].

14 Cyril Arnaud and Pierre-Alain Fouque

6.2 Alternatives to blinding

Our timing attack exploits the behaviour of the MM when an extra bit is carried
out, others, when an extra-reduction occurs. Two strategies are possible for
cancelling out extra bit : the first one uses particular modulus size whereas the
other needs to modify PolarSSL’s key generation routine.

In the following, we suppose that attacked library implements a dummy sub-
traction, such as PolarSSL, used to mask the timing effect of an extra-reduction
without extra bit.

Use particular modulus size Colin D. Walter [9] demonstrated that if we
choose s′ > s such as 2Q < rs′−1, s

′ ≥ s + 2, then MM does not need extra-
reduction. For cancelling out extra-reduction, large integer needs to be repre-
sented with s + 2 words which is quite inefficient. We could make our timing
attack impracticable with particular modulus size.

Suppose that |Q| = kw + 1. Then, s = ⌈<Q>
w ⌉ = k + 1 and R = rs = rk+1

= 2kw+w. We obtain :

2kw < Q < 2kw+1 and Q <
1

2w−1
×R (4)

where w ∈ {8, 16, 32, 64}. According to lemma 1 extra-bit is cancelling out. Thus,
our timing is defeated against’s attacked library.

Countermeasure effectiveness is equivalent to blinding with a lower penalty.
Penalty is 10% (resp. 6%) between 1026 and 1024 (resp. 2050 and 2048) modulus
size .

Suppose that |Q| = kw − 1, so s = ⌈ |Q|w ⌉ = k. We obtain :

2kw−2 < Q < 2kw−1 and
1
4

<
Q

R
<

1
2

(5)

where w ∈ {8, 16, 32, 64}. According to lemma 1 extra-bit is cancelling out. Thus,
our timing is defeated against attacked library.

Modify PolarSSL’s key generation routine Another way to counteract
timing attacks is to generate keys where primes factors are less than

√
5−1
2 ×R .

Then, according to lemma 1, extra-bit is cancelling out.

7 Conclusion

In this paper, we present a timing attack against PolarSSL - a protected SSL
implementation of RSA-CRT. Our attack exploits an unknown arithmetical bias
in Montgomery multiplication. In spite of this countermeasure, our experiments
show that a timing attack is still possible using in inter-process for different
modulus size. We also present a new way for measuring time decryption via
performance monitor counters which improves the efficiency.

Timing Attack against PolarSSL 15

References

1. Paul Bakker. PolarSSL project. Version 1.1.4. http://polarssl.org/download_
overview?download=1.1.4 2012-05-31

2. E. A. Young and T. J. Hudson. OpenSSL project. Version 0.9.7. http://

openssl.org

3. Werner Schindler. A timing attack against RSA with the chinese remainder the-
orem, In CHES 2000, pages 109-124, 2000.

4. O. Aciiçmez, W. Schindler, and K. Kooç. Improving Brumley and Boneh timing
attack on unprotected SSL implementation.In V. Atluri, C. Meadows, and A. Juels,
editors, ACM Conference on Computer and Communication Security, pages 139-
146. ACM, 2005.

5. David Brumley and Dan Boneh. Remote timing attacks are practical, In In Pro-
ceedings of the 12th USENIX Security Symposium, pages 1-14, 2003.

6. P. L. Montgomery. Modular multiplication without trial division, Mathematics of
Computations, 44:519-521, 1995.

7. D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA
vulnerabilities, Journal of Cryptology, 10 : 233− 260, 1997.

8. Intel. Intel 64 and IA-32 : Architectures Software Developer’s Manual Combined
Volumes 3A and 3B, System Programming Guide, Parts 1 and 2.

9. Colin D. Walter. Montgomery Exponentiation Needs no Final Subtractions, Elec-
tronics Letters, 35(21):1831-1832, 1999.

10. Colin D. Walter. Precise Bounds for Montgomery Multiplication and Some
Potentially Insecure Moduli, Proceedings of CT-RSA 2002, LNCS 2271, pp. 30-
39,Springer-Verlag, 2002.

11. W. Schindler, Colin D. Walter. More Detail for a Combined Timing and
Power Attack against Implementations of RSA, in: Paterson, K.G. (ed.) Cryptog-
raphy and Coding 2003. LNCS, vol. 2898, pp. 245-263. Springer, Heidelberg 2003.

A Proof of Lemma 2

Proof. We assume that Q >
√

5−1
2 ×R.

According to assumptions (1) and (3), we write Pmul as :

Pmul = P (extra bit in montmul(A,B,Q))
≃ P (ABR−1 + Y > R)

=
∫ Q

(R−Q)R
Q

∫ Q

(R−Q)R
A

∫ Q

R−AB
R

p(A,B, Y) dY dB dA ,

where Y is unformly distributed on ZQ and p(A,B, Y) is the probability density
function for A×B × Y . According to assumptions (1) and (3) A, B and Y are
independently distributed mod Q. Thus, p(A,B, Y) = p(A) × p(B) × p(Y). As
noted above, A, B and Y are uniform on [0, Q).

http://polarssl.org/download_overview?download=1.1.4
http://polarssl.org/download_overview?download=1.1.4
http://openssl.org
http://openssl.org

16 Cyril Arnaud and Pierre-Alain Fouque

Thus, p(A,B, Y) = 1
Q3 . Then

Pmul ≃
1

Q3

∫ Q

(R−Q)R
Q

∫ Q

(R−Q)R
A

∫ Q

R−AB
R

dY dB dA

=
1

Q3

∫ Q

(R−Q)R
Q

∫ Q

(R−Q)R
A

Q−R +
AB

R
dB dA

=
1

Q3

∫ Q

(R−Q)R
Q

AQ2

2R
+

1
A
× 1

2
(R−Q)2R−Q(R−Q) dA

=
Q

4R
+

(R−Q)2R
Q3

×

(
3
4

+
1
2

log
(Q2

(R−Q)R

))
− (R−Q)

R
.

In the same way, the probability of extra bit in a squaring operation is :

Psquare = P (extra bit in montmul(A,A, Q)) ≃ P (A2R−1 + Y > R)

=
∫ Q

√
(R−Q)R

∫ Q

R−A2
R

p(A, Y) dY dA

=
1

Q2

∫ Q

√
(R−Q)R

Q−R +
A2

R
dA

=
Q

3R
+

2(R−Q)
√

(R−Q)R
3Q2

− (R−Q)
R

.

For a fixed C with (R−Q)R
Q < C < Q, the probability of extra bit is :

PC = P (extra bit in montmul(A,C, Q)) ≃ P (CAR−1 + Y > R)

=
∫ Q

(R−Q)R
C

∫ Q

R−CA
R

p(A, Y) dY dA

=
1

Q2

∫ Q

(R−Q)R
C

Q−R +
CA

R
dA

=
C

2R
+

(R−Q)2R
2CQ2

− (R−Q)
R

⊓⊔

	Timing Attack against protected RSA-CRTimplementation used in PolarSSL
	Introduction
	Background
	Montgomery multiplication
	Modular exponentiation algorithm : sliding window
	Decryption of RSA with Chinese Remainder Theorem
	General idea of timing attacks on RSA-CRT.
	Overview of known timing attacks on RSA-CRT.

	PolarSSL's implementation of RSA-CRT decryption
	Montgomery multiplication multi-precision
	Timing variation in PolarSSL's Montgomery multiplication multi-precision
	The Probability of an extra bit
	Sliding window exponentiation

	A timing attack on PolarSSL
	Two-sample hypothesis testing
	Our attack method

	Experimental results
	Time measurement
	Experimental results
	Experiment 1 - Same process with RTDSC instruction
	Experiment 2 - Same process with RDMSR instruction
	Experiment 3 - Inter-process with RTDSC instruction
	Experiment 4 - Inter-process with RDMSR instruction

	Network attacks

	Defences
	Blinding
	Alternatives to blinding
	Use particular modulus size
	Modify PolarSSL's key generation routine

	Conclusion
	Proof of Lemma ??

