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Abstract. In this paper, we revisit Demirci and Selçuk meet-in-the-middle attacks on AES. We
find a way to automatically model SPN block cipher and meet-in-the-middle attacks that allows to
perform exhaustive search of this kind of attacks. This search uses the tool developed by Bouillaguet,
Derbez and Fouque at CRYPTO 2011 as a subroutine to solve specific systems. We also take into
account ideas introduced by Dunkelman, Keller and Shamir at ASIACRYPT 2010 which can be
seen as a new tradeoff of the classical time/memory tradeoff used by Demirci and Selçuk. As a
result, we automatically recover all the recent improved attacks of Derbez, Fouque and Jean on AES

and we show new improved attacks against 8-rounds of AES-192 and AES-256.

1 Introduction

The AES encryption scheme [19] has been developed in the late nineties and has been specifically
designed to resist against differential and linear cryptanalysis. Since 2008, the best attack for
the 128-bit version was an impossible differential attacks by Lu et al. in [17] going back to a
remark of Biham and Keller [1] improved by Bahrak and Aref in 2007. For the 192-bit and 256-
bit versions, Demirci and Selçuk have described generalization of the Gilbert-Minier attack [16]
which has also been discovered during the AES competition. During almost 10 years, there was
no new cryptanalytic result and the first successful direction to analyze the AES encryption
function comes from differential attacks in the related-key setting in 2009. This is a very powerful
adversarial model in theory and it has recently been studied due to its applications in the analysis
of hash functions. In this model, many other interesting results have been obtained by carefully
studying the key schedule algorithms of AES-192 and AES-256 [4,3,2,5].

Despite important work on side-channel analysis on the AES, no real theoretical improvement
on the first analysis performed during the AES competition [9,16,1,14] has been made. In this
paper we turn our attention to the standard single-key model using meet-in-the-middle attack
since these attacks are very efficient and are now the most efficient on all version of AES [11].
The first new theoretical result has been shown by Demirci and Selçuk at FSE 2008 using the
old Meet-in-the-Middle cryptanalysis technique [10]. They improve the Gilbert and Minier attack
using meet-in-the-middle technique instead of collision ideas. These results at that time use a
very small data complexity 234 but require high precomputation and memory in 2216. They need
a hash table parameterized by 24 byte values. These attacks only work for the 256-bit and 192-
bit versions thanks to a time/memory tradeoff which significantly increases the data and time
complexity. They have been improved by Dunkelman et al. in [13] and more recently by Derbez
et al. in [11]. Finally, recent biclique attacks [6] have been able to attack the full number of
rounds of the AES at the price of using an exhaustive loop on all the key bits.

Meet-in-the-middle Attacks on AES. At Asiacrypt 2010, Dunkelman, Keller and Shamir
improve Demirci and Selçuk attacks on AES-192 and AES-256 using many interesting new ideas
in [13]. They introduce the idea of multisets, a clever differential enumeration technique and a
remark on the AES-192 key schedule to present attacks whose complexity is better than [10].
The main technique is the differential enumeration which allows to reduce the high memory



complexity. This is mainly the bottleneck of the previous attacks with the precomputation phase.
The attack can be seen as a new time/memory tradeoff, while Demirci and Selçuk one was very
simple. Indeed, in this latter basic attack the memory is greater than the time. Consequently,
they reduce the data in memory by repeting the attack as many times as the inverse of the
probability of being in the table. Dunkelman et al. tradeoff uses a specific differential path to
reduce the memory. This saving allows to consider a new attack on 7 rounds of AES-128 with
basically the same complexity as the impossible differential attack, which is the best attack on
this version. They also improve the attacks on the two other versions. However, since these attacks
rely on a differential technique, they require a huge amount of data. Basically, they show that
the number of parameters can be reduced from 24 to 16 while the time complexity is constant.
These attacks have been recently improved by Derbez et al. in [11] by showing that the table can
be reduced since many sequences in the table are never reached. They exactly compute the size
of the memory needed and show that the table can be described by 10 parameters. This leads to
the best attack for 7 rounds of AES-128 and also to the other versions.

Finally, Bouillaguet et al. in [7] study low data complexity attacks in reduce-round AES and
in [8], some the authors build a computer-aided tool to look for the best meet-in-the-middle
attacks in this model. A software has been developed allowing to solve linear systems of equations
in F256 in the variables x, S(x) where S is the AES S-box. This algorithm has been able to find
attacks up to 5 rounds, but its complexity is exponential in the number of S-boxes. It is very
versatile and has been used to solve systems for other cryptosystems such as the LEX stream
cipher, the Pelican-MAC or fault attacks on AES [8,12].

Our Results. In this paper, we consider another direction to improve on Demirci and Selçuk
(DS) attack using only meet-in-the-middle techniques. Here, we generalize DS attack using DS
or DKS time/memory tradeoffs and we automatize the search of these attacks to find the best
ones. We discover many efficient attacks and we also rediscovered the recent improved attacks on
all the versions of AES presented in [11]. To perform this search, we use the tool of Bouillaguet,
Derbez and Fouque, but only on the keyschedule equations instead of the system of equations
describing the AES. These equations are sparse in the number of Sbox and consequently, the
complexity of the search is very low. In particular, we have been able to improve the complexity
on AES-192 and AES-256 by a factor 232 and 240 respectively as it is summarized in table 1.
Finally, some of the attacks we discovered have a small data complexity such as the basic DS
attack. This leads us to increase the number of rounds attacked using small data complexity
as in [7,8]. For instance, we present on AES-128 an attack on up to 6 rounds using 256 data
complexity and 2106 in time and memory whereas Bouillaguet et al. were able to find attack on 5
rounds with complexity 2120. It is possible to extend this last attack to 7 rounds with a marginal
improvement over exhaustive search. We refer the reader to table 1 for all the attacks.

Organization of the Paper. In section 2, we describe the AES cipher and some properties
useful to analyze its security for meet-in-the-middle techniques. Then, we present the previous
attacks and ideas in section 3 before showing our ideas in section 4. In section 5, we discuss on
the results and describe some of our new attacks requiring at most 232 chosen plaintexts. The
section 6 is dedicated to the differential enumeration technique introduced by Dunkelman et al.
and contains the description of new attacks on AES-192 requiring 2104 data, 2138 in memory
and 2140 in time and on AES-256 requiring 2103 in data, 2140 in memory and 2156 in time.

2 AES and Observations

2.1 Description of the AES

The Advanced Encryption Standard [19] is a Substitution-Permutation Network that can be
instantiated using three different key sizes: 128, 192, and 256. The 128-bit plaintext initializes



the internal state viewed as a 4 × 4 matrix of bytes as values in the finite field F256, which is
defined using the irreducible polynomial x8 + x4 + x3 + x + 1 over F2. Depending on the version
of the AES, Nr rounds are applied to that state: Nr = 10 for AES-128, Nr = 12 for AES-192
and Nr = 14 for AES-256. Each of the Nr AES round (Figure 1) applies four operations to the
state matrix (except in the last round where the MixColumns operation is missing):

– AddRoundKey (AK) adds a 128-bit subkey to the state.
– SubBytes (SB) applies the same 8-bit to 8-bit invertible S-Box S 16 times in parallel on

each byte of the state,
– ShiftRows (SR) shifts the i-th row left by i positions,
– MixColumns (MC) replaces each of the four column C of the state by M × C where M is

a constant 4× 4 maximum distance separable matrix over F256,
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Figure 1: Description of one AES round and the ordering of bytes in an internal state.

After the Nr-th round has been applied, a final subkey is added to the internal state to produce
the ciphertext. The key expansion algorithms to produce the Nr + 1 subkeys for AES-128 are
described in Figure ?? for each keysize. We refer to the original publication [19] for further
details.
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Figure 2: Key schedules of the variants of the AES: AES-128, AES-192 and AES-256.

Notations. In this paper, we count the AES rounds from 0 and we refer to a particular byte
of an internal state x by x[i], as depicted in Figure 1. Moreover, in the ith round, we denote the
internal state after AddRoundKey by xi, after SubBytes by yi, after ShiftRows by zi and
after MixColumns by wi. To refer to the difference in a state x, we use the notation ∆x. The
first added subkey is the master key k−1, and the one added after round i is denoted ki.



In some cases, we are interested in swapping the order of the MixColumns and
AddRoundKey operations. As these operations are linear they can be interchanged, by first
XORing the data with an equivalent key and only then applying the MixColumns operation.
We denote the equivalent subkey for the altered version by:

ui = MC−1(ki) =









0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e









× ki

2.2 Observations on the Structure of AES

In this section we recall well-known observations on the structure of AES, that will be used later
in our attacks. We first consider the propagation of differences through SubBytes layer.

Property 1 (the SubBytes property). Consider pairs (α 6= 0, β) of input/output differences for
a single S-box in the SubBytes operation. For 129/256 of such pairs, the differential transition
is impossible, i.e., there is no pair (x, y) such that x⊕ y = α and S(x)⊕ S(y) = β. For 126/256
of the pairs (α, β), there exist two ordered pairs (x, y) such that x⊕ y = α and S(x)⊕S(y) = β,
and for the remaining 1/256 of the pairs (α, β) there exist four ordered pairs (x, y) that satisfy
the input/output differences. Moreover, the pairs (x, y) of input values corresponding to a given
difference pattern (α, β) can be found instantly from the difference distribution table of the Sbox.

Property 1 means that given the input and output difference of an S-box, we can find in constant
time the possible absolute values of the input, and there is only a single one on average.

The second observation is a necessary and sufficient condition for a matrix to be MDS applied
to the matrix MC used in the MixColumns operation.

Property 2 (MixColumns property). Consider a pair (a, b) of 4-byte vectors, such that a =
MC(b), i.e. the input and the output of a MixColumns operation applied to one column.
Denote a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3) where ai and bj are elements of F256. Then
there is no equation involving less than five bytes and for each choice of five bytes among the
eight bytes (a0, a1, a2, a3, b0, b1, b2, b3) there is a linear equation between them.

The third observation concerns the AES key schedule and mainly exploits the fact that most
of the operations in the key schedule algorithm are linear.

Property 3 (the key-schedule properties). Consider a sequence of consecutive subkeys kr, kr+1, . . . .
We have the following useful relations between the equivalent subkeys ur, ur+1, . . . :

• AES-128 :
1) ur[4..7] = ur+1[0..3] + ur+1[4..7]
2) ur[8..11] = ur+1[4..7] + ur+1[8..11]
3) ur[12..15] = ur+1[8..11] + ur+1[12..15]

• AES-192 :
1) ur[4..7] = ur+1[8..11] + ur+1[12..15]
2) ur[12..15] = ur+2[0..3] + ur+2[4..7]
3) if r is even:

i) ur[0..3] = ur+1[4..7] + ur+1[8..11]
ii) the knowledge of ur+1[12..15] and ur+2[0..3] allows to compute ur[8..11]

4) if r is odd:
i) ur[8..11] = ur+1[12..15] + ur+2[0..3]



ii) the knowledge of ur+1[4..7] and ur+1[8..11] allows to compute ur[0..3]
• AES-256 :

1) ur[4..7] = ur+2[0..3] + ur+2[4..7],
2) ur[8..11] = ur+2[4..7] + ur+2[8..11],
3) ur[12..15] = ur+2[8..11] + ur+2[12..15].

We will also use the key bridging technique described by Dunkelman et al. in [13]. This
observation exploits a weakness in keyschedule of AES-192 and can be stated as follows:

Property 4 (the key bridging technique). According to the key schedule of AES-192, knowledge
of columns 0, 1, 3 of subkey k7 allows to deduce column 3 of the whitening key k−1 (which is
actually Column 3 of the master key).

Finally, in our attacks we consider the encryption of structured sets of 256 plaintexts in which
one active byte takes each one of the 256 possible values exactly once, and each one of the other
15 bytes is a (possibly different) constant. Such a structure is called a δ-set.

3 Related Results from Previous Work

In this section, we remind Demirci and Selçuk attack together with its improvements which are
the main results used in our attack. We refer the reader to [10] and [13] for details.

3.1 The Demirci and Selçuk attack

At FSE 2008, Demirci and Selçuk described the following 4-round property for AES.

Property 5. Consider the encryption of a δ-set through four full AES rounds. For each of the 16
bytes of the state, the ordered sequence of 256 values of that byte in the corresponding ciphertexts
is fully determined by just 25 byte parameters. Consequently, for any fixed byte position, there
are at most (28)25 = 2200 possible sequences when we consider all the possible choices of keys
and δ-sets (out of the (28)256 = 22048 theoretically possible 256-byte sequences).

The 25 parameters are intermediate state bytes for any message of the δ-set and their positions
depend on the active byte of the δ-set and on which byte we want to build values. As depicted
on Figure 2, if there are both at position 0 then the 25 parameters are the first column of xi+1,
the full state xi+2, the first column of zi+3 and xi+4[0]. Indeed, if those bytes are known for one
of the messages, we can compute the value of xi+4[0] for each message of the δ-set as follows:

1. Knowing the 256 differences in the full state zi we can compute the 256 differences in the full
state xi+1 because ∆xj+1 = MC.∆zj for any round number j, where MC is the matrix used
in the MixColumns operation.

2. Knowing the value of the first column of xi+1 for one message we can now compute the value
of this column for all messages.

3. Then we apply the Sbox on those bytes and get the value of zi+1[0], zi+1[7], zi+1[10] and
zi+1[13] for each message of the δ-set.

4. The differences are null in all the other bytes of zi+1 so we know the 256 differences in the
full state zi+1.

5. In the same way we obtain the 256 differences in the full state zi+2 and then in the first
column of zi+3 to finally compute the 256 values of xi+4[0]
They first use this property to mount a basic meet-in-the-middle attack on 7 rounds AES-256

depicted on Figure 3 and its procedure is roughly as follows:

• Preprocessing phase: Compute all the 2200 possible sequences according to Property 5,
and store them in a hash table.



zi xi+1 zi+1 xi+2 zi+2 xi+3 zi+3 xi+4

Figure 3: 4 AES-rounds. The 25 black bytes are the parameters of Property 5. Hatched bytes play no role. The
differences are null in white squares

• Online phase:

1. Ask for a structure of 232 chosen plaintexts such that the main diagonal can take the 232

possible values and the remaining bytes are constant.
2. Choose one plaintext and guess the first column of its intermediate state z0 and byte

z1[0].
3. For each of the 255 non-zero values of ∆z1 compute the corresponding difference in the

plaintext using the guessed bytes.
4. Order the obtained δ-set according to the value of the state byte z1[0].
5. Guess the first column of x6 and the byte x5[0] for one of the message and deduce those

state bytes for the 256 ciphertexts.
6. Build the sequence and check whether it exists in the hash table. If not, discard the guess.

P

x0 z0 x1 z1

4 rounds

x5 z5 x6 z6

C

Figure 4: Online phase of Demirci and Selçuk attack. Bon is composed by gray and black bytes. Gray bytes are
used to identify a δ-set and to order it. Black bytes are used to build the sequence from ciphertexts. Hatched
bytes play no role. The differences are null in white squares.

Note that the parameters of both the online and offline phases are state bytes which we shall
refer in the sequel as respectively Bon and Boff . The complexity of the attack depends directly
on how many values can assume those state bytes and how fast can we enumerate them. Indeed,
bytes of Boff (resp. Bon∪P ∪C) are related by the AES equations and thus lead to the knowledge
of some linear combinations of the (sub)keys bytes. Then it may exist some relations derived from
the key-schedule between them, allowing to reduce the number of assumed values. In the sequel,
we will denote by Koff (resp. Kon) the vector space generated from these linear combinations.
For instance, in the case of the described attack and if the last MixColumns is omitted,

• {k−1[0], k−1[5], k−1[10], k−1[15], k0[0], u5[0], k6[0], k6[7], k6[10], k6[13]} is a basis of Kon,
• {u1[0], u2[0], u2[7], u2[10], u2[13], k3[0], k3[5], k3[10], k3[15], k4[0]} is a basis of Koff .

All in all, this attack has a data complexity of 232 chosen plaintexts, a time complexity of
280× 28 partial encryptions/decryptions, and a memory requirement of 2200 256-byte sequences.
The memory complexity of this attack is too high to apply it on the 128 and 192-bit versions.
But its time complexity is low enough to mount an attack from it on 8 rounds AES-256. This
is done by fully guessing the last subkey, decrypting the last round and applying the 7-round
attack, which increases the time complexity by a factor 2128.

3.2 Previous improvements of the original attack

We summarize the main improvements to the original attack of Demirci and Selçuk.



Difference Instead of Value. Demirci and Selçuk showed that the number of parameters can
be reduced to 24 in Property 5 by considering the sequence of the differences instead of values
because in that case xi+4[0] is not needed.

Data/Time/Memory Trade-Off. They also showed that one can do a classical trade-off by
storing in the hash table only a fraction of the possible sequences. Then the attacker has to
repeat the online phase many times to compensate the probability of failure if the sequence is
not present in the table which will increase the data and time complexities. In other word, if
the attack has a complexity (D,T,M) (D for the data, T for the time complexity of the online
phase and M for the memory) then it is possible to modify it to reach a complexity equal to
(D×N, T×N, M/N) for any positive N such that D×N is smaller than the size of the codebook.
This trade-off allows to adapt the attack on 7 rounds of AES-256 to attack the 192-bit version.

Data Recycling. The structure of 232 plaintexts used in the attack contains 224 δ-sets. Thus
the data may be reused 224 times in the Data/Time/Memory Trade-Off.

Time/Memory Trade-Off. Kara observed that considering the sequence of the differences
instead of values allows to remove x5[0] from Boff (as Demirci and Selçuk did) or from Bon.

Multiset. A multiset is an unordered set in which elements can occur many times. Dunkelman et
al. introduce them to replace the functional concept used in the DS attack and propose to store
in the hash table unordered sequences of 256 bytes instead of ordered sequences. Moreover, they
claim that a multiset still contains enough information to make the attack possible. Indeed they
showed that given two random functions f, g : F256 −→ F256, the multisets [f(0), . . . , f(255)]
and [g(0), . . . , g(255)] are equal with a probability smaller than 2−467,6. Combined to the fact
that the Sbox is a bijection, the main gain is to remove z1[0] from Bon since it was used only to
ordered the δ-set, and thus the time complexity is decreased by a factor 28. Finally, we note that
a multiset contains about 512 bits of information and its representation can be easily compressed
into 512 bits of space while an ordered sequence needs 256× 8 = 2048 bits.

Differential Enumeration. In [13], Dunkelman et al. introduce a more sophisticated trade-off
which reduces the memory without increasing the time complexity. The main idea is to add
restrictions on the parameters used to build the table such that those restrictions can be checked
(at least partially) during the online phase. More precisely, they impose that sequences stored
come from a δ-set containing a message m which belongs to a pair (m, m′) that follows a well-
chosen differential path. Then the attacker first focus on finding such pair before to identify a
δ-set and build the sequence. Section 6 is dedicated to this technique.

4 Generalization of the Demirci and Selçuk Attack

The basic attack of Demirci and Selçuk requires a huge memory and a relatively small time
complexity. The classical data/time/memory trade-off allows to balance these complexities by
increasing the data complexity and randomizing the attack. In this section we present new
improvements to reduce the data complexity increase which leads to almost 216 variants of the
Demirci and Selçuk attack and we explain how to find the best ones between them.

4.1 New improvements of the original attack

In this section we summarized our new improvements that allow us to reduce the increase of the
data complexity and, sometimes, to keep the deterministic nature of the original attack.

Difference Instead of Value. The sequences stored in the table have the form [f(0) +
f(0), . . . , f(0) + f(255)] where f is a function that maps the value of zi[0] to the value of



xi+4[0] + ki+3[0]. But, as shown Section 3.1, the procedure used to build the table produces
functions that map the value of ∆zi[0] to the value of ∆xi+4[0] and then the only effect of map-
ping the value of zi[0] is to set the value of the subkey byte ui[0] (i.e. ui[0] ∈ Koff ). In another
hand, if we store in the table sequences of the form [f(0), . . . , f(255)] where f is a function that
maps the value of ∆zi[0] to the value of ∆xi+4[0], then each δ-set can be ordered in 256 ways,
saving data in the classical data/time/memory trade-off described Section 3.2. Furthermore, in
the case of a δ-set encryption, each byte of the first columns of xi+1 assumes the 256 values. As
a consequence, to set one of those bytes to 0 when building the hash table can be compensated
by trying the 256 orders of a δ-set without randomizing the attack.

Multiset. Note that, given a sequence of 256 bytes b0, . . . , b255, bi = bj implies that the multisets
[bi + b0, . . . , bi + b255] and [bj + b0, . . . , bj + b255] are equal too. But Dunkelman et al. shown that
given a random function f : F256 −→ F256, the multiset [f(0)+f(1), . . . , f(0)+f(255)] contains on
average 162 different values out of 256. Thus we conclude that a δ-set can be reused 162 ≈ 27,34

times on average. This remark holds on for the multisets stored in the hash table during the
precompution phase and so the memory requirement must be corrected by a factor 2−0,66.

Time/Memory Trade-Off. To improve the attack of Demirci and Selçuk our idea is to store
in the sequences the 256 differences in a linear combinations of bytes of x5 instead of the 256
differences in a byte of x5. Thanks to Property 2, minimal equations involving ∆zi and ∆xi+1

contains exactly 5 variables such that k are on a column c of ∆zi and 5 − k are on the column
c of ∆xi+1, with 1 ≤ k ≤ 4 for any round number i. We emphase that Demirci and Selçuk only
consider cases k = 1 and k = 4. The size of the set Bon (resp. Boff ) is determined by k and it
decreases (resp. increases) when k is increased. Thus we can trade time by memory and vice-versa
without affecting the data complexity. Furthermore, contrary to the other data/time/memory
trade-offs, the attack need not to be randomized. Attacks taking advantage of this trade-off are
described Section 5.2 and 5.4.

New Data/Time/Memory Trade-Off. The idea of the previous trade-off can be applied to
the δ-set. Instead of considering sets of 256 plaintexts such that one byte assumes the 256 values
and the others are constant, we consider set of 256 plaintexts such that exactly 5 bytes of zi and
xi+1 are active. We still call such a set a δ-set. The consequences on the attack are the same as
the previous trade-off but it now affects the size of the structure needed and bytes of zi must be
guessed in the online phase despite the use of unordered sequences. An attack taking advantage
of this trade-off is described Section 5.3.

4.2 Finding the best attack

Once the round-reduced AES is split into three parts, the new improvements allow to mount
(4×

(

8

5

)

)2 ≈ 215.6 different attacks but there are only (4× (
(

4

1

)

+
(

4

2

)

+
(

4

3

)

+
(

4

4

)

))2 ≈ 211.8 possible
sets Bon (resp. Boff ) to study. To exhaust all of them and find the best attacks we decide to
automatize the search. Thus for each set we need to answer to the two following questions:

• How many values can assume those state bytes?

• How fast can we enumerate them?

A priori, this is not an easy task because S-boxes are involved in the keyschedule. To perform it
we used the tool developed in [8], originally designed to find the best solver for an AES-like system
of equations among a particular class of solvers based on the meet-in-the-middle technique.



Algorithm 1: OriginalTool
Data: System of equations E in variables X involving some S-boxes.
Result: An optimal algorithm to enumerate all the solutions of E with predictable time

and memory complexities.

The problem we seek to solve is very close to the problem solved by this tool but is still
different and so we have slightly tweaked it.

Algorithm 2: TweakedTool (naive implementation)
Data: System of equations E in variables X involving some S-boxes and a subset Y ⊆ X.
Result: A list of optimal algorithms to enumerate all the possible values of Y according

to the system of equations E with predictable time and memory complexities.

L← ∅;
foreach Y ⊆ Z ⊆ X do

F ← the biggest subspace of E in variables Z;
A ← OriginalTool(F );
L← best algorithms from L ∪ {A};

end
return L

The output of our tweaked tool is a list because the number of possible values of Y enumerated
by considered algorithms is not necessary constant and if an algorithm is slower than an other
but finds less possible values for Y than it then both of them must be studied. Note that the
tweaked tool can be applied directly to the set Boff (resp. Bon) and the system of equations
describing the AES but it is faster to apply it on a basis of Koff (resp. Kon) and the keyschedule
equations since the complexity of the original tool is exponential in the number of S-box.

Finally we were able to perform an exhaustive search over all the parameters for all round-
reduced versions of AES for the three key lengths in less than an hour on a personal computer.
Furthermore we automatically rediscovered the observations made in Section 2.2, including the
non-trivial key bridging technique.

5 Results

In this section we present the results obtained by exhausting the variants of the attack of Demirci
and Selçuk. We give an overview of the complexities reached and describe three new attacks re-
quiring at most 232 chosen plaintexts and minimizing the maximum between the time complexity
(counted in AES encryption) and the memory complexity (counted in 128-bit block).

5.1 Overview of the results

Our best results on 7 and 8 rounds are summarized on Figures 4, 5 and 6. They give the (log256

of) data complexity reached as a function of the number of guess to perform in the online phase
and in the offline phase. A gray cell means that the corresponding attack is deterministic while
the other attacks are obtained by applying the classical data/time/memory trade-off.

We observe that almost all the best attacks work with only 232 chosen-plaintexts. For com-
parison, to reach balanced complexities on seven rounds from the original attack by using the
classical data/time/memory trade-off, the amount of data needed will be approximately 271 cho-
sen plaintexts. Furthermore, we have been able to increase by one the number of rounds attacked
with 232 chosen-plaintexts for the three key length but with time and memory complexities very
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Figure 5: Best variants on 7 rounds AES-192.
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close to the natural bound of the exhaustive search. We also obtained competitive results in the
very low data complexity league with, for instance, attacks on 8 rounds of AES-256 requiring
only 28 chosen plaintexts.

5.2 Attack on six rounds AES-128 with 28 chosen-plaintexts.

If the data available is limited to 28 chosen-plaintexts, the best attack found is based on the
attack depicted on Figure 7 and the meet-in-the-middle is performed on the equation

03.∆z3[8] + ∆z3[9] = 07.∆x4[8] + 07.∆x4[9] + 02.∆x4[11].

Let be ein = 03.z3[8] + z3[9] and eout = 07.x4[8] + 07.x4[9] + 02.x4[11].

P

x0 z0 x1 z1 x2 z2

x3 z3 x4 z4 x5 z5

C

Figure 8: Attack on 6 AES rounds. Bytes of Boff are in black. Bytes of Bon are in gray. Hatched bytes play no
role. The differences are null in white squares

The bytes of Boff are the first column of x1, the two last columns of z2, and bytes 8 and 9 of
z3. They can assume 28×14 different values and so the memory requirement is 2112−0,66 = 2111,34

multisets on average according to the remark made in Section 4.1.
As the S-box is a bijection and as we consider a δ-set in which only one byte is active, we

do not need to guess x0[0] in order to identify the corresponding set of 256 plaintexts to build
the multiset. As a consequence, the bytes of Bon are the entire state x5 except the first column,
and the third column of x4 except byte 10. Thanks to the keyschedule equations, they can
take only 28×12 values instead of 28×15 since we have the three equations u4[5] = u5[1] + u5[5],
u4[8] = u5[4] + u5[8] and u4[15] = u5[11] + u5[15].

All in all this leads to the following attack:

• Preprocessing phase:
1. Set ∆iz0[0] to i for 0 ≤ i ≤ 255. Then ∆iz0 is known since the other differences are null.
2. Guess x1[0..3] (for one of the 256 messages) and use ∆iz0 to compute ∆iz1[0], ∆iz1[7],

∆iz1[10] and ∆iz1[13]. Then ∆iz1 is known since the other differences are null.
3. Guess bytes 1, 2, 6, 7, 8, 11, 12 and 13 of x2. Use them with ∆iz1 to compute ∆iz2[8..15].
4. Guess x3[8] then compute ∆iz3[8] using ∆iz2[8..11].
5. Guess x3[13] then compute ∆iz3[9] using ∆iz2[12..15].
6. Compute the multiset [∆0ein, . . . ,∆255ein] and store it in a hash table (if it was not

already in it).
• Online phase:

1. Ask for a structure of 256 plaintexts such that byte 0 assume the 256 possible values and
others bytes are constant.

2. Choose one of them to be the one from which difference will be computed.
3. Guess bytes 1, 2, 4, 5, 8, 11, 14 and 15 of u5. Compute u4[5] and u4[8] and then partially

decrypt the ciphertexts to obtain ∆ix4[8] and ∆ix4[9] for 0 ≤ i ≤ 255.



4. Guess bytes 3, 6 and 9 of u5, and continue to partially decrypt the ciphertexts.

5. Guess byte 12 of u5. Compute u4[15] and then partially decrypt the ciphertexts to obtain
∆ix4[11].

6. Build the multiset [∆0eout, . . . ,∆255eout] and check whether the multiset exists in the
hash table. If not, discard the key guess.

Finally, the time complexity is equivalent to 2 × 2−6 × 28 × 296 = 299 encryptions and
the memory requirement is 2113,34 AES-blocks. The probability for a wrong guess to succeed is
approximatively 2111,34 × 2−467,6 = 2−356,26 and, as we try 296 key guess, we expect that only
the right value remains after the last step.

Trade-Off. Since the memory is higher than the time complexity, the data/time/memory trade-
off presented Section 3.2 is possible. This leads to an attack using 28 chosen plaintexts (as the
data is reused 27,17 times), with a time complexity equivalent to 2106,17 encryptions and requiring
2106,17 128-bit blocks.

Key Recovery. This attack retrieves the right value of u5 except on bytes 0, 7, 10 and 13 and
so can easily be turned into a key-recovery attack. The attacker guesses the four missing bytes
of u5 to retrieve the master key and try it. This step has a negligible complexity compared to
the previous one.

5.3 Attack on 7 rounds AES-256 with 216 chosen-plaintexts

The best attack on seven rounds AES-256 with 216 chosen-plaintexts is depicted on Figure 8.
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Figure 9: Attack on 7 AES rounds (key length : 256 bits). Bytes of Boff are in black. Bytes of Bon are in gray.
Hatched bytes play no role. The differences are null in white squares

The bytes of Boff are bytes 0,2 and 3 of x1, the three first columns of x2 and the third column
of z3. The bytes of Bon are bytes 0 and 15 of x0, the entire state x6, the second column of x5

and byte 9 of x4. The number of values assumed by the bytes of Bon is reduced by a factor 28

using the equation u4[5] = u6[1] + u6[5]. The time complexity is equivalent to 2178 encryptions
and the memory is 2153,34 AES-blocks.

Key Recovery. This attack can easily be turned into a key-recovery attack without increasing
the complexity since only 12 key bytes are sufficient to recover the master key.

5.4 Attack on 7 rounds AES-192 with 232 chosen-plaintexts

The best attack on seven rounds AES-192 with 232 chosen-plaintexts is depicted on Figure 9.

The bytes of Boff are the first column of x2, the three first columns of z3, and bytes 0, 1
and 2 of z4. The bytes of Bon are the first column of z0, the second and third columns of x6 and
bytes 2 and 3 of x5. Thanks to Property 3, we can reduce the number of possible values assumed
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Figure 10: Attack on 7 AES rounds (key length : 192 bits). Bytes of Boff are in black. Bytes of Bon are in gray.
Hatched bytes play no role. The differences are null in white squares

by them by a factor 28 since u5[7] = u6[11] + u6[15]. The time complexity is equivalent to 2106

encryptions and the memory requirement is 2153,34 AES-blocks.

Trade-Off. Applying the classical data/time/memory trade-off leads to an attack using 232 cho-
sen plaintexts, with a time complexity equivalent to 2129,67 encryptions and a memory require-
ment of 2129,67 AES-blocks. Note that the data complexity remains 232 because the structure
may be divided into 224 δ-sets and each of them may be reused 27,34 times on average. Key

Recovery. This attack can easily be turned into a key-recovery attack without increasing the
complexity since only 15 key bytes are sufficient to recover the master key.

6 The Differential Enumeration Technique

We present here our results using the differential enumeration technique first introduced by
Dunkelman et al. in [13] and improved by Derbez et al. in [11]. We explain how this technique
works by describing a new attack on 8 rounds and then we give an overview of our results.

6.1 Attack on 8 rounds AES-192

Without restriction on data, the best attack on eight rounds AES-192 begins by considering the
attack depicted on Figure 10.
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Figure 11: Attack on 8 AES rounds. Bytes of Boff are in black. Bytes of Bon are in gray. Hatched bytes play no
role. The differences are null in white squares

The bytes of Boff are the first column of x2, the entire state x3, the two last columns of z4

and bytes 2 and 3 of z5. The bytes of Bon are the second column of z0, the three first columns of
x7, and the first column of x6 excepted byte 1. Thanks to Property 3, they take only 28×17 = 2136

values because u6[0] = u7[4] + u7[8] and u6[7] = u7[11] + u7[15]. Finally, the time complexity is
equivalent to 2138 encryptions and the memory requirement is 2241,34 AES-blocks.



Differential Enumeration. The idea of Dunkelman et al. is to store in the hash table only the
multisets built from a δ-set containing a message m that belongs to a pair (m, m′) following a
well-chosen differential path. In our case this is the truncated differential 4 → 1 → 4 → 16 →
8 → 2 → 3 → 12 depicted on Figure 11. Then the bytes of Boff can take only 216×8 values
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x4 z4 x5 z5 x6 z6 x7 z7

C

Figure 12: Differential characteristic on 8 AES rounds. The differences are null in white squares. The value of
bytes of Boff can be derived from the differences in circled bytes.

for such a pair. Indeed, if we guess the differences in circled bytes then we obtain the difference
before and after the S-box for each bytes of Boff and thus we can derive their absolute value
thanks to Property 1. As a consequence, the memory requirement is decreased by a factor 2112.
However, we now need to find a pair that follows this truncated differential path and so the
procedure of the online phase becomes:

1. Ask for a structure of 232 plaintexts such that the second diagonal assume the 232 possible
values and others bytes are constant.

2. Store the corresponding ciphertexts in a hash table to identify the pairs that have a non-zero
probability to follow the differential path.

3. For each of these pairs:

(a) Guess ∆z6[0], ∆z6[7] and ∆z6[10] and compute the difference in the three first columns
of x7.

(b) Deduce the value of the three first columns of x7 using ∆z7.

(c) Deduce u6[0] and u6[7] using u7[4], u7[8], u7[11] and u7[15].

(d) Deduce z6[0] and z6[7] and compute ∆x6[0] and ∆x6[3].

(e) Check if the equation between ∆x6[0] and ∆x6[3] is satisfied.

(f) Deduce ∆x6[2] and then compute x6[2] using ∆z6[10].

(g) Guess ∆x1[5] and compute the difference in the second column of z0.

(h) Deduce the value of the second column of z0 using ∆x0.

(i) Get the δ-set associated to one of the message of the pair and build the multiset from the
corresponding ciphertexts.

(j) Check whether the multiset exists in the hash table. If not, discard the key guess.

4. Restart with a new structure if no check found.

As each structure contains 263 pairs and each of these pairs follows the differential with
probability 2−144, we need 281 structures on average. Then, for each structure we have to study
only 263−32 = 231 pairs and for each of them we have to perform 224×28 partial encryptions that
is equivalent to 228 encryptions. All in all, this leads to an attack with 2113 chosen plaintexts, a
time complexity equivalent to 2140 encryptions and a memory requirement of 2130 AES-blocks.

Reducing the data complexity. Note that for each possible choice of the active diagonal in
the plaintext we found 96 attacks with the same complexity. As the corresponding differential
paths are different it is possible to perform many attacks in parallel to save data in exchange of



memory. For instance, if we use structure with three active diagonals, it is possible to reach a
complexity of 2104,83 chosen plaintexts and 2138,17 AES-blocks, the time remaining unchanged.

Key Recovery. This attack can easily be turned into a key-recovery attack without increasing
the complexity since only 9 key bytes are sufficient to recover the master key.

AES-256. This attack can be applied to the AES-256 excepted that the keyschedule does not
allow us to reduce the time complexity anymore. This leads to an attack with 2113 chosen
plaintexts, a time complexity equivalent to 2156 encryptions and a memory requirement of 2130

AES-blocks. For each possible choice of the active diagonal in the plaintext we found 384 attacks
with the same complexity so it is possible to save more data than previously. For instance, if we
use structure with three active diagonals, it is possible to reach a complexity of 2102,83 chosen
plaintexts and 2140,17 AES-blocks, the time remaining unchanged.

6.2 Results

As in the previous section, we have exhausted the almost 216 variants to find the best attacks.
Some of our results are summarized on Figures 12, 13 and 14. As expected we have automatically
rediscovered the attacks found by Dunkelman et al. and the ones found by Derbez et al., but
we have also obtained many new attacks including the best known attacks on 8 rounds for both
AES-192 and AES-256 described Section 6.1.
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Figure 13: Differential Enumeration: results on 7 rounds AES-128. All attacks have a data complexity of 2113

chosen plaintexts. Numbers in cells are the log2 of the numbers of attacks found with the same complexity.

Limitations. To save more data, Dunkelman et al. propose to consider differential paths with
a bigger probability. We have exhausted the simple case where the new differential paths do not
have active new bytes in the middle rounds. However, we did not try interesting cases where the
active bytes of the pair and bytes of Bon and Boff are desynchronized since, besides the number
of cases to handle, the complexity of our tweaked tool tends to explode as we cannot apply it to
the keyschedule only.

7 Conclusion

We have presented new attacks on AES by generalizing Demirci and Selçuk meet-in-the-middle
attacks. We took into account various time/memory tradeoffs including more advanced techniques
introduced by Dunkelman et al. in [13]. We automatized the search of the best attacks of this
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kind using the tool developed by Bouillaguet et al. in [8] solving linear systems of equations
involving S-boxes. As a result, we recovered all best attacks on AES-128, including the recent
one of Derbez et al. in [11] and found new more efficient attacks for AES-192 and AES-256.
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Table 1: Current cryptanalysis of (reduced-round) AES variants in the single-key model.
Target Rounds Data (CP) Memory Time Technique Reference

AES-128

6 28 2106.17 2106.17 MITM Section 5.2
7 290.4 2106 2117.2 MA Impossible Diff. [18]
7 2116 2116 2116 MITM [13]
7 297 298 299 MITM [11]
7 232 2126.47 2126.47 MITM Full version
8 288 28 2125.3 Bicliques [6]

10 (full) 288 28 2126.2 Bicliques [6]

AES-192

6 28 2109.67 2109.67 MITM Full version
7 2116 2116 2116 MITM [13]
7 297 298 299 MITM [11]
7 19 · 232 19 · 232 2155 Square [14]
7 295 2143 2143 MITM [10]
7 291.2 2139.2 2101 Impossible Diff. [17]
7 28 2153.34 2163 MITM Full version
7 232 2129.67 2129.67 MITM Section 5.4
8 241 2186 2187.63 MITM [20]
8 2113 2129 2172 MITM [13]
8 2113 282 2172 MITM [11]
8 2

113
2
130

2
140 MITM Section 6.1

8 2107 296 2172 MITM [11]
8 2

104.83
2
138.17

2
140 MITM Section 6.1

8 232 2182.17 2182.17 MITM Section A.3
9 280 28 2188.8 Bicliques [6]

12 (full) 280 28 2189.4 Bicliques [6]

AES-256

6 28 2114.34 2122 MITM Full version
7 21 · 232 21 · 232 2172 Square [14]
7 295 2143 2143 MITM [10]
7 2116 2116 2116 MITM [13]
7 297 298 299 MITM [11]
7 28 2186 2170.34 MITM Section A.1
7 216 2153.34 2178 MITM Section 5.3
7 232 2133.67 2133.67 MITM Full version
8 234.2 2205.8 2205.8 MITM [10]
8 2113 2129 2196 MITM [13]
8 2113 282 2196 MITM [11]
8 2

113
2
130

2
156 MITM Section 6.1

8 2107 296 2196 MITM [11]
8 2

102.83
2
140.17

2
156 MITM Section 6.1

8 28 2234.17 2234.17 MITM Section A.2
8 232 2193.34 2195 MITM Section A.4
9 2120 28 2251.9 Bicliques [6]
9 2120 2203 2203 MITM [11]
9 232 2254.17 2254.17 MITM Full version

14 (full) 240 28 2254.4 Bicliques [6]
CP: Chosen-plaintext
MA: Memory Accesses
Time complexity measures the online time in encryption units unless mentioned otherwise.
Memory complexity is measured in AES blocks.



A.1 Attack on seven rounds AES-256 with 28 chosen plaintexts

The best attack found with 28 chosen plaintexts is based on the attack depicted on Figure 15
which has a time complexity equivalent to 2163 encryptions and a memory requirement of 2193,34

AES-blocks. Indeed, since u5 and u6 are independent we may expect to reduce the number of
possible values of Bon by a factor 28 only, and this is done by using the equation u4[13] =
u6[9] + u6[13].

P

x0 z0 x1 z1 x2 z2

x3 z3 x4 z4 x5 z5 x6 z6

C

Figure 16: Attack on 7 AES rounds (key length : 256 bits). Bytes of Boff are in black. Bytes of Bon are in gray.
Hatched bytes play no role. The differences are null in white squares

Finally, applying the trade-off leads to an attack using 28 chosen plaintexts, with a time
complexity equivalent to 2170,34 encryptions and a memory requirement of 2186 AES-blocks. If we
allow more data it is possible to reach a complexity of 215,84 chosen plaintexts, 2178,17 encryptions
and 2178,17 AES-blocks, to compare to the attack with 216 chosen plaintexts described Section 5.3.
It can be easily turned into a key-recovery attack without increasing the complexity since only
12 key bytes are needed to recover the master key.

A.2 Attack on eight rounds AES-256 with 28 plaintexts

The best attack found with 28 chosen plaintexts is based on the attack depicted on Figure 16
which has a time complexity equivalent to 2227 encryptions and a memory requirement of 2241,34

AES-blocks. Indeed, since u5 and u6 are independent we may expect to reduce the number
of possible values of Bon by a factor 23×8 only, and this is reached by using the equations
u4[7] = u6[3] + u6[7], u4[10] = u6[6] + u6[10] and u4[13] = u6[9] + u6[13].

P

x0 z0 x1 z1 x2 z2 x3 z3

x4 z4 x5 z5 x6 z6 x7 z7
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Figure 17: Attack on 8 AES rounds. Bytes of Boff are in black. Bytes of Bon are in gray. Hatched bytes play no
role. The differences are null in white squares

Finally, applying the trade-off leads to an attack using 28 chosen plaintexts, with a time
complexity equivalent to 2234,17 encryptions and a memory requirement of 2234,17 AES-blocks. It
can be easily turned into a key-recovery attack without increasing the complexity since only 4
key bytes are needed to recover the master key.



A.3 Attack on eight rounds AES-192 with 232 chosen plaintexts

The best attack found is based on the seven rounds attack described section A.1 extended by one
round at the beginning. Thus the memory requirement remains the same as 2193,34 AES-blocks.
In another hand, we need to guess four more key bytes in the online phase and the keyschedule
equations used have changed.

The bytes of Bon are the entire state x7, the last column of x6 and byte 1 of x5. However,
the knowledge of u7 allows to compute u6[0..7], u5[12..15] and k−1[12..15], thanks to Property 3
and the key bridging technique. Thus the online phase can be performed as follows:

1. Ask for a structure of 232 chosen plaintexts such that bytes 0, 5, 10 and 15 assume the 232

possible values and the rest of the bytes are constant.
2. Guess the subkey u7 and compute k−1[15].
3. Guess bytes 0, 5 and 10 of k−1 and then choose a δ-set.
4. Compute u6[3] and u6[6] and then partially decrypt the ciphertexts.
5. Guess u6[9] and u6[12] and then partially decrypt the ciphertexts.
6. Compute u5[13] and then partially decrypt the ciphertexts to obtain ∆ix5[9] for 0 ≤ i ≤ 255.
7. Build the corresponding multiset and check whether it exists in the hash table. If not, discard

the key guess.

All in all, the time complexity is equivalent to 2× 28×25 × 2−8×4 × 2−6 × 28 = 2171 encryp-
tions and the memory requirement is 2193,34 AES-blocks. Then we apply the data/time/memory
trade-off to reach a complexity of 232 chosen plaintexts, 2182,17 encryptions and 2182,17 AES-
blocks. Finally, this attack can easily be turned into a key-recovery attack without increasing the
complexity since only 8 key bytes are sufficient to recover the master key.

A.4 Attack on eight rounds AES-256 with 232 chosen plaintexts

The best attack found is the same as the 192-bit version. The only difference is that there is only
one equation between the key bytes guessed during the online phase. Indeed, the only relation we
have is u5[13] = u7[9] + u7[13]. Thus the time complexity of this attack is 2195 encryptions and
its memory requirement about 2193,34 AES-blocks. Finally, this attack can be easily turned into
a key-recovery attack without increasing the complexity since only 12 key bytes are sufficient to
recover the master key.
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