Indifferentiable Hashing to Barreto–Naehrig Curves

Abstract : A number of recent works have considered the problem of constructing constant-time hash functions to various families of elliptic curves over finite fields. In the relevant literature, it has been occasionally asserted that constant-time hashing to certain special elliptic curves, in particular so-called BN elliptic curves, was an open problem. It turns out, however, that a suitably general encoding function was constructed by Shallue and van de Woestijne back in 2006. In this paper, we show that, by specializing the construction of Shallue and van de Woestijne to BN curves, one obtains an encoding function that can be implemented rather efficiently and securely, that reaches about 9/16ths of all points on the curve, and that is well-distributed in the sense of Farashahi et al., so that one can easily build from it a hash function that is indifferentiable from a random oracle.
Type de document :
Communication dans un congrès
Progress in Cryptology - 2012, Oct 2012, Santiago, Chile. Springer, LNCS 7533, pp.17, 2012, LATINCRYPT 2012. 〈10.1007/978-3-642-33481-8_1〉
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01094321
Contributeur : Pierre-Alain Fouque <>
Soumis le : vendredi 12 décembre 2014 - 10:07:01
Dernière modification le : mercredi 16 mai 2018 - 11:23:29
Document(s) archivé(s) le : vendredi 13 mars 2015 - 10:30:49

Fichier

FT12.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Pierre-Alain Fouque, Mehdi Tibouchi. Indifferentiable Hashing to Barreto–Naehrig Curves. Progress in Cryptology - 2012, Oct 2012, Santiago, Chile. Springer, LNCS 7533, pp.17, 2012, LATINCRYPT 2012. 〈10.1007/978-3-642-33481-8_1〉. 〈hal-01094321〉

Partager

Métriques

Consultations de la notice

167

Téléchargements de fichiers

227