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Abstract. In this paper, we study the AES block cipher in the chosen-key setting. The
adversary’s goal of this security model is to find triplets (m,m′, k) satisfying some properties
more efficiently for the AES scheme than generic attacks. It is a restriction of the classical
chosen-key model, since as it has been defined originally, differences in the keys are possible.
This model is related to the known-key setting, where the adversary receives a key k, and
tries to find a pair of messages (m,m′) that has some property more efficiently than generic
attacks. Both models have been called open-key model in the literature and are interesting
for the security of AES-based hash functions.
Here, we show that in the chosen-key setting, attacking seven rounds (resp. eight rounds)
of AES-128 can be done in time and memory 28 (resp. 224) while the generic attack would
require 264 computations as a variant of the birthday paradox can be used to predict the generic
complexity. We have checked our results experimentally and we extend them to distinguisers
of AES-256.
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1 Introduction

The Advanced Encryption Standard (AES) [16] is nowadays the subject of many attention
since attacks coming from hash function cryptanalysis have put its security into question.
Related-key attacks and meet-in-the-middle attacks that begin in the middle of the cipher
(also known as splice-and-cut attacks) have been proposed to attack the full number of
rounds for each AES versions [1,2,4], while other techniques exist for smaller version [5].
This interesting connection between hash functions and block ciphers shows that any im-
provement on hash function cryptanalysis can be useful for attacking block ciphers and
vice-versa.

In this work, we study another model that has been suggested to study the security of
hash functions based on AES components. Knudsen and Rijmen [9] have proposed to consider
known-key attacks since in the hash function domain, the key is usually known and the goal
is to find two input messages that satisfy some interesting relations. In some setting, a part
of the key can also be chosen (for instance when salt is added to the hash function) and
therefore, cryptanalysts have also consider the model where the key is under the control of
the adversary. The latter model has been called chosen-key model and both models belong to
the open-key model. The chosen-key model has been popularized by Biryukov et al. in [2],
since a distinguisher in this model has been extended to a related-key attack on the full
AES-256 version.

Related Work. Knudsen and Rijmen in [9] have been the firsts to consider known-key
distinguishers on AES and Feistel schemes. The main motivations for this model are the
following:

– if there is no distinguisher when the key is known, then there will also be no distinguisher
when the key is secret,



– if it is possible to find an efficient distinguisher, finding partial collision on the output
of the cipher more efficiently than birthday paradox would predict even though the key
is known, then the authors would not recommend the use of such cipher,

– finally, such model where the key is known or chosen can be interesting to study the use
of cipher in a compression function for a hash function.

In the same work, they present some results on Feistel schemes and on the AES. Following
this work, Minier et al. in [14] extend the results on AES on the Rijndael scheme with larger
block-size.

In [2], Biryukov et al. have been the firsts to consider the chosen-key distinguisher for
the full 256-bit key AES. They show that in time q · 267, it is possible to construct q-
multicollision on Davies-Meyer compression function using AES-256, whereas for an ideal

cipher, it would require on average q · 2
q−1

q+1
128

time complexity. In these chosen-key distin-
guishers, the adversary is allowed to put difference also in the key. Later, Nikolic et al. in [15],
describe known-key and chosen-key distinguishers on Feistel and Substitution-Permutation
Networks (SPN). The notion of chosen-key distinguisher is more general than the model
that we use: here, we let the adversary choose the key, but it has to be the same for the
input and output relations we are looking for. We do not consider related-keys in this article.
Then in [12], rebound attacks have been used to improve known-key distinguishers on AES

by Mendel et al. and in [8], Gilbert and Peyrin have used both the SuperSBox and the
rebound techniques to get a known-key distinguisher on 8-round AES-128. Last year at
FSE, Sasaki and Yasuda show in [18] an attack on 11 Feistel rounds and collision attacks in
hashing mode also using rebound techniques, and more recently, Sasaki et al. studied the
known-key scenario for Feistel ciphers like Camellia in [17].

Our Results. In this paper, we study 128- and 256-bit reduced versions of AES in the
(single) chosen-key model where the attacker is challenged to find a key k and a pair of
messages (m,m′) such that m ⊕ m′ ∈ E and AESk(m) ⊕ AESk(m

′) ∈ F , where E and F
are two known subspaces. On AES-128, we describe in that model a way to distinguish
the 7-round AES in time 28 and the 8-round AES in time 224. In the case of the 7-round
distinguisher, our technique improves the 216 time complexity of a regular rebound tech-
nique [13] on the SubBytes layer by computing intersections of small lists. The 8-round
distinguisher introduces a problem related the SuperSBox construction where the key pa-
rameter is under the control of the adversary. As for AES-256, the distinguishers are the
natural extensions of the ones on AES-128. Our results are reported in Table 1. We have
experimentally checked our results and examples are provided in the appendices. We believe
our practical distinguishers can be useful to construct non-trivial inputs for the AES block
cipher to be able to check the validity of some theoretical attacks, for instance [7].

Outline of the paper. The paper is organized as follows. We begin in Section 2 by recalling
the AES and the concept of SuperSBox. Then in Section 3.1, we precise the chosen-key
model in the ideal case to be able to compare our distinguishers to the ideal scenario.
Section 3.1 describes the main results of the AES-128 and Section 4 shows how to apply
similar results to the AES-256.

2 Description of the AES

The Advanced Encryption Standard [16] is a Substitution-Permutation Network that can be
instantiated using three different key bit-lengths: 128, 192, and 256. The 128-bit plaintext



Table 1: Comparison of our results to previous ones on reduced-round distinguishers of the AES-128 in
the open-key model. Results from [1] are not mentioned since we do not consider related-keys in this paper.

Target Model Rounds Time Memory Ideal Reference

AES-128

Known-key 7 256 - 258 ⋆ [9]

Known-key 7 224 216 264 [12]

Single-chosen-key 7 222 - 264 [3]

Single-chosen-key 7 28 28 264 Section 3.2

Known-key 8 248 232 264 [8]

Single-chosen-key 8 244 - 264 [3]

Single-chosen-key 8 224 216 264 Section 3.3

AES-256

Single-chosen-key 7 28 28 264 Section 4.1

Single-chosen-key 8 28 28 264 Section 4.2

Single-chosen-key 9 224 216 264 Section 4.3
⋆ Claimed by the authors as a very inaccurate estimation of the [ideal] complexity.

initializes the internal state viewed as a 4 × 4 matrix of bytes as values in the finite field
GF (28), which is defined via the irreducible polynomial x8 + x4 + x3 + x + 1 over GF (2).
Depending on the version of the AES, Nr rounds are applied to that state: Nr = 10 for
AES-128, Nr = 12 for AES-192 and Nr = 14 for AES-256. Each of the Nr AES round
(Figure 1) applies four operations to the state matrix (except the last one where we omit
the MixColumns):

– AddRoundKey (AK) adds a 128-bit subkey to the state.
– SubBytes (SB) applies the same 8-bit to 8-bit invertible S-Box S 16 times in parallel

on each byte of the state,
– ShiftRows (SR) shifts the i-th row left by i positions,
– MixColumns (MC) replaces each of the four column C of the state by M×C where M

is a constant 4× 4 maximum distance separable circulant matrix over the field GF (28),
M = circ(2, 3, 1, 1).

AK SB

S

x
x
x
x

SR

C ←M × C

x
x

x
x

MC

wi−1 xi yi zi wi

Figure 1: An AES round applies MC ◦ SR ◦ SB ◦ AK to the state. There are Nr = 10 rounds in AES-128.

After the Nr-th rounds has been applied, a final subkey is added to the internal state to
produce the ciphertext. The key expansion algorithm to produce the Nr + 1 subkeys for
AES-128 is described in Figure 2(a), and in Figure 2(b) for the AES-256. We refer to the
official specification document [16] for further details.

SuperSBox. In [6], Rijmen and Daemen introduced the concept of SuperSBox to study
two rounds of AES. This transformation sees the composition SB ◦ AK(k) ◦ MC ◦ SB as four
parallel applications of a 32-bit S-Box, and has been useful for several cryptanalysis works,
see for instance [8,10]. Abusing notations, in the sequel, we call SuperSBox keyed by the
key k the transformation that applies this composition to a single AES-column. In that
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Figure 2: Key schedules of the variants of the AES (AES-128 and AES-256) – Naming of bytes in a state.

context, the key k which parameterized the SuperSBox is also a 32-bit AES-column. We
denote that operation by SuperSBoxk.

Notations. In this paper, we count the AES rounds from 0 and we refer to a particular byte
of an internal state x by x[i], as depicted in Figure 2(c). Moreover, as shown in Figure 1, in
the ith round, we denote the internal state after AddRoundKey by xi, after SubBytes

by yi, after ShiftRows by zi and after MixColumns by wi. To refer to the difference in
a state x, we use the notation ∆x.

3 Chosen-key distinguishers

3.1 Limited Birthday Distinguishers

In this section, we precise the distinguishers we are using. Our first goal is to distinguish
the AES-128 from an ideal keyed-permutation in the chosen-key model. We will derive
distinguishers for AES-256 afterwards. We are interested in the kind of distinguishers where
the attacker is asked to find a key and a pair of plaintext whose difference is constrained in
a predefined input subspace such that the ciphertext difference lies in an other predefined
subspace.

Property 1 Given two subspaces Ein and Eout, a key k and a pair of messages (x, y) verify

the property on a permutation P if x+ y ∈ Ein and P (x) + P (y) ∈ Eout.

This type of distinguisher looks like the limited birthday distinguishers introduced by
Gilbert and Peyrin in [8] with a very close lower bound proved in [15], except that we allow
the attacker more freedom; namely, in the choice of the key bits. To determine how hard
this problem is, we need to compare the real-world case to the ideal scenario. In the latter,
the attacker faces a family1 of pseudo-random permutations F : K ×D −→ D, and would
run a limited birthday distinguisher on a particular random permutation Fk to find a pair of

1where both K and D are {0, 1}128 in the case of AES-128.



messages that conforms to the subspace restrictions of Property 1. The additional freedom
of this setting does not help the attacker to find the actual pair of messages that verifies the
required property, because the permutation Fk has to be chosen beforehand. Put it another
way, the birthday paradox is as constrained as if the key were known since no difference can
be introduced in the key bits.

Therefore, even if we let the key to be chosen by the attacker, the limited birthday
distinguisher from [8] applies in the same way. For known Ein and Eout, we denote ni =
dim(Ein) and no = dim(Eout). In terms of truncated differences, ni (resp. no) represents the
number of independent active truncated differences in the input (resp. output) of a random
permutation Fk ∈ F (see Figure 3). Both ni and no range in the interval between 0 and
n, where n = 16 in the case of AES. Without loss of generality, we assume that ni ≤ no:
the attacker thus considers Fk rather than its inverse, as it is easier to collide on n − no

differences than on n − ni. The attacker continues by constructing two lists L and L′ of

ni

n

n0 n− n0

Fk

Figure 3: Assuming ni ≤ no, the attacker searches for a pair of input to the random permutation Fk

differing in ni known byte positions such that the output differs in no known byte positions. A gray cell
indicates a byte with a truncated difference.

28ni plaintexts each by choosing a random value for the n − ni inactive bytes of the input
and considering all the ni active ones in Ein. With a birthday paradox on the two lists L
and L′, she expects a collision on at most 2ni bytes of the ciphertexts. In the event that
n−no ≥ 2ni, then n−2ni bytes have not a zero-difference in the ciphertext. Hence, we need
to restart the birthday paradox process about 28(n−no−2ni) times, which costs 28(n−no−ni) in
total. Otherwise, if n−no < 2ni, then a single birthday paradox with lists of size 28(n−no)/2

is sufficient to get a collision on the n− no required bytes in time 28(n−no)/2.

3.2 Distinguisher for 7-round AES-128

We consider the 7-round truncated differential characteristic of Figure 4, where the differ-
ences in both the plaintext and the ciphertext lie in subspaces of dimension four. Indeed,
the output difference lies in a subspace of dimension four since all the operations after the
last SubBytes layer are linear. With respect to the description of the distinguisher (Sec-
tion 3.1), the time complexity to find a pair of messages that conforms to those patterns in
a family of pseudo-random permutations is 264 basic operations.

The following of this section describes a way to build a key and a pair of messages that
conform to the restrictions in time 28 basic operations using a memory complexity of 28

bytes. This complexity has to be compared to 216 operations, which is the time complexity
expected for a straightforward application of the rebound attack [13] on the SubBytes

layer of the AES. In that case, there are 16 random differential transitions around the
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Figure 4: The 7-round truncated differential characteristic used to distinguish the AES-128 from a random
permutation. Black bytes are active, white bytes are not.

AES S-Box, which happens to be all compatible2 with probability 2−16. Repeating with
random differences 216 times, we expect to find a pair of internal states that conforms to the
randomized differences. In the following, we proceed slightly differently to reach a solution
in time 28.

In terms of freedom degrees, we begin by estimating the number of solutions that we
expect to verify the truncated differential characteristic. There are 16 bytes in the first
message, 4 more independent ones in the second message and 16 others in the key: that makes
36 freedom degrees at the input. On a random input, the probability that the truncated
differential characteristic being followed depends on the amount of freedom degrees that we
loose in probabilistic transitions within the MixColumns transitions: 3 in round 0 to pass
one 4 → 1 truncated transition, 12 in round 3 to pass four 4 → 1 transitions and 3 again in
round 4 for the last 4 → 1 transition. In total, we thus expect

28×(16+4+16) 2−8×(3+12+3) = 28×18

triplets (m,m′, k) composed by a pair (m,m′) of messages and a key k to conform to the
truncated differential characteristic of Figure 4. Hence, we have 18 freedom degrees left to
find such a triplet.

First, we observe that whenever we find such a solution for the middle rounds (round 1
to round 4), we are ensured that all the rounds will be covered as in the whole truncated
differential characteristic due to an outward propagation occurring with probability 1. Hence,
our strategy focuses on those rounds. The context is similar to the rebound scenario, where
we first solve the inbound phase and then propagate it into the outbound phase.

2By compatible, we mean that we can find at least a pair of values that conforms to the differential
transition. In the case of the AES S-Box, for a random differential transition δ → δ′, this is known to be
possible with probability close to 1/2.
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Figure 5: The 7-round distinguishing attack focuses of the middle rounds. Black bytes have known values
and differences, gray bytes have known values, hatched bytes have known differences and white bytes have
unknown values and/or differences.

To reduce the number of valid solutions, we begin by fixing some bytes (Figure 5) to a
random value: ∆z1 and x2[0..3]. Therefore, we can deduce the values and differences in the
first column of x2 and y2, as well as the difference ∆x3 by linearity. Let [∆0, ∆1, ∆2, ∆3]

T

be the column-vector of deduced differences in ∆y2 and diag(δ0, δ1, δ2, δ3) the differences in
the diagonal of ∆x4. Linearly, we can express the differences around the SubBytes layer of
round 3 (see Figure 6). As a consequence, from the differential properties of the AES S-Box,

2∆0

∆0

∆0

3∆0

∆3

∆3

3∆3

2∆3

∆2

3∆2

2∆2

∆2

3∆1

2∆1

∆1

∆1

SB

∆x3
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9δ0

11δ3

9δ2

13δ2

14δ1

14δ0

14δ3

9δ3

11δ2

9δ1

11δ0

∆y3

Figure 6: Differences around the SubBytes layer of round 3: each ∆j is fixed, whereas the δi are yet to be
determined.

for i, j ∈ {0, . . . , 3}, ∆j suggests 27 different values for δi: we store them in the list Li,j .

Li,j =
{

δi

/

∆j → δi is possible
}

. (1)

Once done, we build the list Li, for i ∈ {0, . . . , 3}:

Li =

3
⋂

j=0

Li,j =
{

δi

/

∀j ∈ {0, . . . , 3}, ∆j → δi is possible
}

. (2)

Each Li,j being of size 27, we expect each Li to contain 24 elements.

We continue by setting ∆x4[0] to random value in L0 and x4[0] to a random value, which
allow to determine the value and difference in y4[0]. Since the difference ∆y4 can only take
28 values due to the MixColumns transition of round 4, we also deduce ∆w4 and the
remaining differences in ∆y4. The knowledge of ∆y4 suggests 27 possible values for δi. As
before, we store them in lists called Ti, and we select a value for δi in Li ∩Ti (Figure 7). We
expect each intersection to contain about 23 elements. More rigorously, if we assume that
the lists Li,j and Ti are uniformly distributed, then the probability that L0, L1∩T1, L2∩T2

and L3 ∩ T3 are not empty is higher than 99.96% (see proof in Appendix C). Finally, we
compute the values in x3 and in the diagonal of x4.
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Figure 7: The 7-round distinguishing attack focuses of the middle rounds. Black bytes have known values
and differences, gray bytes have known values, hatched bytes have known differences and white bytes have
unknown values and/or differences.

We now need to find a key that matches the previous solving in the internal states: we
build a partial pair of internal states that conforms to the middle rounds, but that sets 8
bytes on constraints in the key. Namely, if we denote ki the subkey introduced in round i
and ui = MC−1(ki), then both u3 and k4 have four known bytes (see Figure 8). We start by
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Figure 8: Generating a compatible key: gray bytes are known, and numbers indicate the order in which we
guess or determine the bytes.

fixing all the bytes marked by 1 in u3 to random values: this allows to compute the values
of all 2’s in the two last columns of k3. By the column-wise operations of AES key schedule,
we can get the values of all bytes marked by 3. As for the 4’s, we get them since there are
four known bytes among the eight in the first columns of u3 and k3. Again, the key schedule
gives the 5’s and 6’s, and the MixColumns the 7’s. Finally, we determine values for all
the byte tagged by 8 from the key schedule equations. By inverting the key schedule, we
are thus able to compute the master key k.

All in all, we start by getting a partial pair of internal states that conforms to the middle
rounds, continue by deriving a valid key that matches the partial known bytes and determine
the rest of the middle internal states to get the pair on input messages. The bottleneck of
the time and memory complexity occurs when handling the lists of size at most 28 elements
to compute intersections. Note that those intersections can be done in roughly 28 operations
by representing lists by 256-bit numbers and then perform a logical AND.

In the end, we build a pair of messages (m,m′) and a key k that conforms to the
truncated differential characteristic of Figure 4 in time 28 basic operations, where it costs
264 in the generic scenario. We note that among the 18 freedom degrees left for the attack,
we used only 10 by setting 10 bytes to random values, such that we expect 28×8 = 264

solutions in total. All those solutions could be generated in time 264 by iterating over all
the possibilities of the bytes marked by 1 in Figure 8.

We implemented the described algorithm to verify that it indeed works, and we found
for instance the triplet (m,m′, k) reported in Appendix A.



3.3 Distinguisher for 8-round AES-128

We consider the 8-round truncated differential characteristic of Figure 9, where the matrices
of differences in both the plaintext and the ciphertext lie in the same matrix subspaces of
dimension four as before. Indeed, the output difference lies in a subspace of dimension four
since all the operations after the last SubBytes layer are linear. Again, the distinguisher
previously described (Section 3.1) claims that the time complexity to find a pair of messages
that conforms to those patterns in a family of pseudo-random permutations runs in time
264 operations.

AK(0) SB SR MC

AK(1) SB SR MC

AK(2) SB SR MC

AK(3) SB SR MC

AK(4) SB SR MC

AK(5) SB SR MC

AK(6) SB SR MC

AK(7) SB SR MC

Round 0

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Figure 9: The 8-round truncated differential characteristic used to distinguish the AES-128. Black bytes
are active, white bytes are not.

The following of this section describes a way to build a key and a pair of messages that
conform to the restrictions in time and memory complexity 224. We note that it is possible
to optimize the memory requirement to 216. As in the previous section, there are 36 freedom
degrees at the input, which shrink to 18 after the consideration of the truncated differential
characteristic. Therefore, we also expect 28×18 solutions in the end.

First of all, we observe that finding 224 triplets (m,m′, k) composed by a key and a pair
of internal states that conform to the rounds 2 to 5 is sufficient since the propagation in the
outward rounds is done with probability 2−24 due to the MixColumns transition of round
1. The following analysis consequently focuses of those four middle rounds.

We now describe an instance of a problem that we use as a building block in our algo-
rithm, which is related to the keyed SuperSBox construction.



Problem 1. Let a and b two bytes. Given a 32-bit input and output differences ∆in and

∆out of a SuperSBoxk for a unknown k, find all the pairs of AES-columns (c, c′) and keys

k such that:

i. c+ c′ = ∆in,

ii. SuperSBoxk(c) + SuperSBoxk(c
′) = ∆out,

iii. SuperSBoxk(c) = [a, b, ⋆, ⋆]T.

Considering the key k known and the case where there is no restriction on the output
bytes (iii), we would expect this problem to have one solution on average. Finding it would
naively require 232 computations by iterating over the 232 possible inputs and check whether
the output has the correct ∆out known difference. The additional constraints on the two
output bytes reduce the success of finding a pair (c, c′) of input to 2−16, but if we allow the
four bytes in the key k to be chosen, then we expect 216 solutions to this problem.

To find all of them in 216 simple operations, we proceed as follows (Figure 10): the
two output bytes a and b being known, we can deduce the values of the two associated
bytes before the last SubBytes, ã and b̃ respectively. We can also deduce the difference in
those bytes since the output difference is known. Then, we guess the two unset differences
at the input of the last SubBytes: the differences then propagate completely inside the
SuperSBox. At both SubBytes layers, by the differential properties of the AES S-Box,
we expect to find one value on average for each of the six unset transitions. Consequently,
the input and output of the AddRoundKey operation are known, which determines the
four bytes of k. In the end, we find the 216 solutions of Problem 1 in time 216 operations.

∆in ∆out

a

b

ã

b̃

SB MC ARK SB

Figure 10: Black bytes have known values and differences, hatched bytes have known differences and white
bytes have unknown values and/or differences.

To apply this strategy to the 8-round truncated differential characteristic of Figure 9,
we start by randomizing the difference ∆y2, the difference ∆w5 and the values in the first
column of w5. Due to the linear operations involved, we deduce ∆x3 = ∆w2 from ∆y2 and
∆y4 from ∆w4. To use the previous algorithm, we randomize the values of the two first
columns of w4 (situtation in Figure 11). Doing so, the four columns of y4 are constrained on
two bytes each and have fixed differences. Consequently, the four SuperSBoxes between
x3 and y4 keyed by the four corresponding columns of k4 conforms to the requirements3 of
Problem 1. In time and memory complexity 216, for i ∈ {0, 1, 2, 3}, we store the 216 solutions
for the ith SuperSBox associated to the ith column of x4 in the list Li.

We continue by observing that the randomization of the bytes in w4 actually sets the
value of two diagonal bytes in k5, k5[0] and k5[5], which imposes constraints of the elements
in the lists Li. We start by considering the 216 elements of L3, and for each of them, we

3The positions of the known output bytes differ, but the strategy applies in the same way.
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Figure 11: Black bytes have known values and differences, gray bytes have known values, hatched bytes
have known differences and white bytes have unknown values and/or differences.

learn the values x4[12..15] and k4[12..15]. Due to the column-wise operations in the key
schedule, we also deduce the value of k4[0]. Filtering the elements of L0 which share that
value of k4[0], we are left with 28 elements for bytes x4[0..3] and k4[0..3]. At this point, we
constructed 216+8 = 224 solutions in time 224 that we store in a list L0,3.

As k5[5] has been previously determined, we can deduce k4[5] = k5[5] + k5[1] from the
AES key schedule for each of the entry of L0,3. Again, this adds an 8-bit constraint on the
elements of L1: we expect 28 of them to match the condition on k4[5]. In total, we could
construct a list L0,1,3 of size 224+8 = 232, whose elements would be the columns 0, 1 and
3 of x4 and k4, but as soon as we get 224 elements in that list, we stop and discard the
remaining possibilities.

Finally, to ensure the correctness of the choice in the remaining column 2, we need to
consider the MixColumns operation in round 4 and the subkey k5. Indeed, as soon as we
choose an element in both L0,1,3 and L2, x4, k4 and k5 become fully determined, but we
need to ensure that the values x5[10] and x5[15] equal to the known ones. In particular, for
x5[10], we have:

k4[10] + k5[6] = k5[10] (3)

= w4[10] + x5[10] (4)

= z4[8] + z4[9] + 2z4[10] + 3z4[11] + x5[10], (5)

and for x5[15]:

k4[11] + k5[7] + k4[15] = k5[11] + k4[15] (6)

= k5[15] (7)

= w4[15] + x5[15] (8)

= 3z4[12] + z4[13] + z4[14] + 2z4[15] + x5[15], (9)

where (3), (6) and (7) come from the key schedule, (4) and (8) from the AddRoundKey

and (5) and (9) use the equations from the MixColumns. Hence, for each element of L0,1,3,



we can compute:

S(x4[8]) + k4[10] := x5[10] + k5[6] + S(x4[13]) + 2 S(x4[2]) + 3 S(x4[7]), (10)

k4[11] + 2 S(x4[11]) := k5[7] + k4[15] + 3 S(x4[12]) + S(x4[1]) + S(x4[6]) + x5[15] (11)

and lookup in L2 to find 216 2−8×2 = 1 element that match those two byte conditions. We
create the list L by adding the found element from L2 to each entry of L0,1,3.

All in all, in time and memory complexity 224, we build L of size 224 and we now exhaust
its elements to find one that passes the 2−24 probability of the 4 → 1 backward transition
in the MixColumns of round 1. Indeed, an a → b transition in the MixColumns layer
cancels 4− b output bytes, so that it would happen with probability 2−8(4−b) for a random
input a. Consequently, we expect to find a pair (m,m′) of messages and a key k that conforms
to the 8-round truncated differential characteristic of Figure 9 in time 224 when it requires
264 computations in the ideal case.

Among the 18 available freedom degrees available to mount the attack, we uses 17 of
them, which means that we expect to have 28 solutions. We could have them in time 232,
but since we discarded 28 elements in the algorithm described, we get only 1 in time 224.
We note that it is possible to gain a factor 28 in the memory requirements of our attack
since we can implement the algorithm without storing the lists L0, L0,3 and L0,1,3, by using
hash tables for L1, L2 and L3.

We also implemented the described algorithm to verify that it indeed works, and we
found for instance the triplet (m,m′, k) reported in Appendix B.

4 Extention to AES-256

The two distinguishers described in the previous section can be easily extended in distin-
guishers on the AES-256. The main idea is to use the 16 additional freedom degrees in
the key to extend the truncated differential characteristics by introducing a new fully active
round in the middle.

4.1 Distinguisher for 7-round AES-256

The first step of the attack described in the 7-round distinguisher on AES-128 (Section 3.2)
still applies in the case of AES-256 since it does not involve the key schedule. Then, we
can generate a compatible key easily since there are only two subkeys involved: we can just
choose bytes of k3 and k4 as we want, except the imposed ones, and deduce the master key
afterwards. This yields to a distinguisher with time and memory complexities around 28.

4.2 Distinguisher for 8-round AES-256

We use a similar approach as the 7-round distinguisher on AES-128 of Section 3.2, but the
truncated differential characteristic has one more fully active round in the middle4.

We begin by choosing values for ∆z1 and x2[0..3]. This allows to deduce ∆x2, ∆y2, and
∆x3. Then, we also set random values for ∆w5 and for the diagonal of x5 to obtain both
∆x5 and ∆y4. Now, we find a value for ∆x4, which is compatible with ∆x3 and ∆y4. Indeed,
we can not take an arbitrary value for ∆x4 because the probability that it fits is very close
to 2−32. However, we can find a correct value with the following steps:

4In that case, the truncated differential characteristic is thus the one from Figure 9.



1. Store the 27 possible values for ∆x4[0] in a list L0.
2. In a similar way, make lists L1 with ∆x4[1], L2 with ∆x4[2] and L3 with ∆x4[3].
3. Choose a value for (x3[0], x3[5], x3[10], x3[15]) and compute ∆x4[0..3].
4. If ∆x4[0..3] is not in L0 × L1 × L2 × L3, then go back to step 3.

On average, we go back to the step 3 only
(

28−7
)4

= 24 times since lists are of size 27. In
the same way, we can obtain values for the other columns of x4.

At this point, we computed actual values in all those internal states, and we need to
generate a compatible key. Finding one can be done using the procedure described in Fig-
ure Figure 12. Bytes tagged by 1 are chosen at random, odd steps use the key schedule
equations and even steps the properties of MixColumns.
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Figure 12: Generating a compatible key: gray bytes are known, and numbers indicate the order in which
we guess or determine the bytes.

4.3 Distinguisher for 9-round AES-256

We begin as in Section 3.3 by choosing the difference ∆y2, the difference ∆w6 and the values
in the first column of w6. Then, we deduce ∆w2 = ∆x3 from ∆y2 and ∆y5 from ∆w5. In
addition, we set x3 to a random value, which allows to determine ∆x4. In order to apply the
result from Problem 1 again, we set the values in two first columns of w5 to random values.

As before, for i ∈ {0, 1, 2, 3}, we store in the list Li the 216 possible values of the i-th
column of x5 and the i-th column of k5. Unlike previously, we also obtain values of the i-th
column of SR(k4), but the scenario of the attack still applies. We start by observing that
bytes of L0 allow to compute k4[1] and k4[13], which are bytes of L3. Thus, we can merge L0

and L3 in a list L0,3 containing 216 elements. Then, we construct the list L0,2,3 containing
224 elements of L0,3 × L2. Finally, from bytes of L0,2,3, we can compute:

3z5[11] := k4[2] + S(k5[15]) + k4[6] + k4[10] + z5[8] + z5[9] + 2z5[10] + x6[10], (12)

z5[14] + k4[3] := S(k5[12]) + k4[7] + k4[11] + k4[15] + 3z5[12] + z5[13] + 2z5[15] + x6[15].
(13)

As a consequence, we expect only one element of L1 to satisfy those two byte conditions and
so, we obtain 224 solutions for the middle rounds. All in all, this yields to a distinguisher
with a time complexity around 224 and a memory requirement around 216 using the same
trick given in Section 3.3.

5 Conclusion

In this paper, we study the Advanced Encryption Standard and show how to find a pair of
messages and a key that satisfy some property a lot more efficiently than a generic attack
based on the birthday paradox for both AES-128 and AES-256. Our new results improve



the previous claimed ones by reaching very practical complexities, and give new insights of
the open-key model for block ciphers, and hash functions based on block ciphers.

On AES-128, we show efficient distinguishers for versions reduced to seven and eight
rounds, and verified in practice that they indeed work by implementing the actual attacks.
We describe precisely the algorithms to get the valid inputs, and by applying the same
strategy, we deduce similar results for AES-256. Namely, we get efficient distinguishers on
versions reduced to seven, eight and nine rounds.
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A Solution for the 7-round truncated differential characteristic on

AES-128

Table 2: Example of a pair of messages (m,m′) that conforms to the 7-rounds truncated dif-
ferential characteristic for AES-128 of Section 3.2. The master key found by the attack is:
93CA1344 10A7EBDF B659C8AF ECC59699. The lines in this array contains the values of two internal
states before entering the corresponding round, as well as their difference.

Round m m′ m⊕m′

Init. E5FC5DFE 79A851F7 7EB9E366 51C3D9C5 F8FC5DFE 79C951F7 7EB96566 51C3D96E 1D000000 00610000 00008600 000000AB

0 76364EBA 690FBA28 C8E02BC9 BD064F5C 6B364EBA 696EBA28 C8E0ADC9 BD064FF7 1D000000 00610000 00008600 000000AB

1 65CC94D1 85BE1AD3 F3D75BF1 ACCBB8BD 8DCC94D1 85BE1AD3 F3D75BF1 ACCBB8BD E8000000 00000000 00000000 00000000

2 E93319CD 88F41390 10623230 F66BFBAD C92309FD 88F41390 10623230 F66BFBAD 20101030 00000000 00000000 00000000

3 89C79074 E09E6F44 F1DBAB2F F984FCC4 1404532A 09774F8D 24BF1AFA CD551921 9DC3C35E E9E920C9 D564B1D5 34D1E5E5

4 867A12E6 BF19139C 1C848362 400030D3 047A12E6 BF5B139C 1C847C62 400030D7 82000000 00420000 0000FF00 00000004

5 84606BEA 0E22D904 3BF29061 9F454807 4B606BEA 0E22D904 3BF29061 9F454807 CF000000 00000000 00000000 00000000

6 FF867544 274436AF 75ECC287 A6BF72F6 3C6A996B 274436AF 75ECC287 A6BF72F6 C3ECEC2F 00000000 00000000 00000000

End C49E4CB3 0C944043 D5ED6D3B 247E3843 2563B1AF 68F0EC8B A6788B48 EEF27E05 E1FDFD1C 6464ACC8 7395E673 CA8C4646

B Solution for the 8-round truncated differential characteristic on

AES-128

Table 3: Example of a pair of messages (m,m′) that conforms to the 8-round truncated dif-
ferential characteristic for AES-128 of Section 3.3. The master key found by the attack is:
98C45623 6CA00686 301E836D 614DFAB0. The lines in this array contains the values of two internal
states before entering the corresponding round, as well as their difference.

Round m m′ m⊕m′

Init. 9588B342 D43D04D4 AB298AE1 E43687DB 0B88B342 D46904D4 AB29D0E1 E4368728 9E000000 00540000 00005A00 000000F3

0 0D4CE561 B89D0252 9B37098C 857B7D6B 934CE561 B8C90252 9B37538C 857B7D98 9E000000 00540000 00005A00 000000F3

1 53FEBB0F 6BFF8E5E B471A8E3 1A2232A3 0EFEBB0F 6BFF8E5E B471A8E3 1A2232A3 5D000000 00000000 00000000 00000000

2 E9F44380 991A8ECB F7B18344 2C936CEB 65B2054A 991A8ECB F7B18344 2C936CEB 8C4646CA 00000000 00000000 00000000

3 2977F65C 3883EDEF 615D3C9E 5CE5384B 8F24A5A9 2398C0D9 10CEDEEF DFEEB0C3 A65353F5 1B1B2D36 7193E271 830B8888

4 BB1DB144 2BE947C3 5FCD89DF DF1CA0EB 82188658 42FFCAAE B337F0CA 09AB1513 3905371C 69168D6D ECFA7915 D6B7B5F8

5 C3E1961D 02A9713E 770A20D4 5470FA8F 8DE1961D 029B713E 770A3AD4 5470FA27 4E000000 00320000 00001A00 000000A8

6 D79D534C 33CC3861 76635DCD 548870C9 EB9D534C 33CC3861 76635DCD 548870C9 3C000000 00000000 00000000 00000000

7 D7F645C6 89358035 09847940 D831EFDE 0211A2F4 89358035 09847940 D831EFDE D5E7E732 00000000 00000000 00000000

End 16E58308 DFD78F11 A8B05B9D C0A0363E E49CFA83 D4DC9207 FC4CF3C9 9B3BF6FE F279798B 0B0B1D16 54FCA854 5B9BC0C0



C Probability of success

We are interested in the probability that the intersection of four or five subsets of {1, . . . , 255}
each of size 128 being empty.

To evaluate it, let P denote the set of subsets X ⊂ {1, . . . , 255} such that |X| = 128.
We also define:

T (n, k) := {(X1, . . . , Xn) ∈ Pn | |X1 ∩ . . . ∩Xn| = k} for n ≥ 1, k ≥ 0.

In others words, |T (n, k)|/|Pn| is the probability that the intersection of n elements from P
has a size equal to k.

Property 2 The cardinality of T (n, k) satisfies the following recurrence relation:

{

|T (1, k)| = |P| if k = 128, 0 otherwise

|T (n+ 1, k)| =
∑128

l=k |T (n, l)|
(

l
k

)(

255−l
128−k

)

for n ≥ 1, k ≥ 0.

Proof. First, we note that we can partition Pn by the sets:

T (n, Y ) := {(X1, . . . , Xn) ∈ Pn | X1 ∩ . . . ∩Xn = Y } for any subset Y ⊂ {1, . . . , 255}.

Then, we have:

|T (n+ 1, k)| =
∑

Y

| {(X1, . . . , Xn+1) ∈ T (n, Y )× P | |Y ∩Xn+1| = k} |

=
∑

Y

|T (n, Y )| × | {X ∈ P | |Y ∩X| = k} |

If we fix a set Y ⊂ {1, . . . , 255}, then a set X ∈ P such that |X ∩ Y | = k is obtained by
choosing k elements in Y and 128− k elements in Y c. As a consequence, we obtain:

|T (n+ 1, k)| =
∑

Y

|T (n, Y )|

(

|Y |

k

)(

255− |Y |

128− k

)

=
255
∑

l=0

(

l

k

)(

255− l

128− k

)

∑

|Y |=l

|T (n, Y )|

Finally, we remark that {T (n, Y )}|Y |=l is a partition of T (n, l) and thus:

|T (n+ 1, k)| =
255
∑

l=0

(

l

k

)(

255− l

128− k

)

|T (n, l)|.

⊓⊔

Using Maple, we found that the probability of failure of the distinguisher described in
Section 3.2 is:

T (4, 0)

|P|4
×

(

T (5, 0)

|P|5

)3

≈ 0.04%.
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