Mining Heterogeneous Multidimensional Sequential Patterns

Elias Egho 1 Chedy Raïssi 1 Nicolas Jay 1 Amedeo Napoli 1
1 ORPAILLEUR - Knowledge representation, reasonning
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : All domains of science and technology produce large and hetero-geneous data. Although much work has been done in this area, min-ing such data is still a challenge. No previous research targets the mining of heterogeneous multidimensional sequential data. In this work, we present a new approach to extract heterogeneous multidi-mensional sequential patterns with different levels of granularity by relying on external taxonomies. We show the efficiency and interest of our approach with the analysis of trajectories of care for colorectal cancer using data from the French casemix information system.
Type de document :
Communication dans un congrès
European Conference on Artificial Intelligence, Aug 2014, Prague, Czech Republic, France. 263, pp.6, 2014, 〈10.3233/978-1-61499-419-0-279〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01094365
Contributeur : Elias Egho <>
Soumis le : jeudi 18 décembre 2014 - 14:04:09
Dernière modification le : jeudi 11 janvier 2018 - 06:25:24
Document(s) archivé(s) le : samedi 15 avril 2017 - 07:58:23

Fichier

ECAI2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Elias Egho, Chedy Raïssi, Nicolas Jay, Amedeo Napoli. Mining Heterogeneous Multidimensional Sequential Patterns. European Conference on Artificial Intelligence, Aug 2014, Prague, Czech Republic, France. 263, pp.6, 2014, 〈10.3233/978-1-61499-419-0-279〉. 〈hal-01094365〉

Partager

Métriques

Consultations de la notice

445

Téléchargements de fichiers

102