An efficient learning technique to predict link quality in WSN

Abstract : In this paper, we apply learning techniques to predict link quality evolution in a wireless sensor network (WSN) and take advantage of wireless links with the best possible quality to improve the packet delivery rate. We model this problem as a forecaster prediction game based on the advice of several experts. The forecaster learns on-line how to adjust its prediction to better fit the environment metric values. Simulations using traces collected in a real WSN show the improvement of the prediction when the experts use the SES prediction strategy, whereas the forecaster uses the EWA learning strategy.
Type de document :
Communication dans un congrès
PIMRC 2014 - 25th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Sep 2014, Washington, United States. 2014, Proceedings of PIMRC 2014. 〈http://www.ieee-pimrc.org/2014/〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01094472
Contributeur : Pascale Minet <>
Soumis le : lundi 23 février 2015 - 17:19:08
Dernière modification le : jeudi 11 janvier 2018 - 06:21:31
Document(s) archivé(s) le : mercredi 27 mai 2015 - 10:06:39

Fichier

PID3293067.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01094472, version 1

Collections

Citation

Dana Marinca, Pascale Minet, Nesrine Ben Hassine. An efficient learning technique to predict link quality in WSN. PIMRC 2014 - 25th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Sep 2014, Washington, United States. 2014, Proceedings of PIMRC 2014. 〈http://www.ieee-pimrc.org/2014/〉. 〈hal-01094472〉

Partager

Métriques

Consultations de la notice

208

Téléchargements de fichiers

191