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Abstract— Balancing energy demand and production is be-
coming a more and more challenging task for energy utilities
also because of the larger penetration of renewable energies
which are more difficult to predict and control. While the
traditional solution is to dynamically adapt energy production
to follow time-varying demand, a new trend is to drive demand
itself. Most of the ongoing actions in this direction involve
greedy energy consumers, like industrial plants, supermarkets
or large buildings. Pervasive communication technologies may
allow in the near future to push further the granularity of such
approach, by having the energy utility interacting with residen-
tial appliances. In this paper we study large scale direct control
of inelastic home appliances whose energy demand cannot be
shaped, but simply deferred. Our solution does not suppose
any particular intelligence at the appliances. The actuators are
rather smart plugs—simple devices with local communication
capabilities that can be inserted between appliances’ plugs and
power sockets and are able to interrupt/reactivate power flow
through the plug. A simple control message can be broadcast
to a large set of smart plugs for probabilistically enabling
or deferring the activation requests of a specific load type in
order to satisfy a probabilistic bound on the aggregated power
consumption. The control law can be easily derived analytically.

I. INTRODUCTION

Load control in modern power grids is becoming more and

more important for maintaining a balance between energy

supply and demand. Traditionally, demand was less pre-

dictable and less controllable than supply, so that the energy

balance was achieved by adapting dynamically generation

levels to match the consumption. The increasing penetration

of renewable energies has radically changed the scenario,

due to their lower predictability. The possibility to control

load demand is then becoming more appealing for several

actors, such as the energy utilities (which can better plan

the production as well as control the grid reliability) and the

end customers (who can actively participate to the energy

market).

However, despite the many proposals in the literature [1]

discussing different demand response programs, load control

for residential users (who significantly affect the overall en-

ergy load variability [2]) is still limited to pilot projects [3] or

is the last resort in critical situations [4]. One of the reasons

is that the implementation of user-friendly demand response

mechanisms requires often investments (for updating user

appliances and communication infrastructure) that are not

clearly justified for the end users.

In this paper we consider a solution which enables direct

load control for deferrable appliances in a large scale power
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grid, with very limited infrastructure investments for commu-

nication and appliances control. Indeed our approach requires

no change or limited change to the appliances, because

it relies on some devices which can be inserted between

the appliances’ plugs and the power sockets. These devices

are usually called smart plugs and are already produced

with a variety of different purposes: prevent vampire power

drain, monitor energy usage and generally reduce the overall

costs to run various electronics. For our purpose, their basic

functionality is to be able to interrupt/reactivate the current

flow once they receive a command from a remote controller

which may be managed by the energy utility itself or by some

other entity like an energy aggregator [5], [6]. In this way

the smart plug can simply postpone the appliance’s operation

reducing instantaneous power demand. The command is

relayed to the smart plug from a home gateway, which could

be the smart meter or another network element connected

to the Internet. The communication between the smart plug

and the gateway requires then some local communication

protocol, like Ethernet, WiFi, ZigBee, BlueTooth, etc.. The

gateway may simply be an application running on a PC, on

the ADSL box or even on a smartphone. In many countries

a large percentage of the households is already provided

with a Local Area Network (often a WiFi one) connected

to the Internet. In this case the cost to deploy the solution

is basically limited to the cost of the smart plugs. At the

moment of writing, there are already commercial devices

which can accomplish all the functionalities required and

whose price is less than 40$ [7].

Each household is not by itself a greedy energy consumer,

then the proposed approach needs a large deployment in

order to control a significant percentage of total power

demand. Controlling individually each appliance on a fine

time scale may require excessive communication signaling

overhead as well as computation power at the central con-

troller. Moreover privacy issues may advocate against such

form of capillary control. For these reasons we consider an

open-loop probabilistic control, which only uses historical

information about the aggregate behavior of a group of

residential users without the need for bidirectional control

messages or high-frequency meter readings. Our mechanism

only requires the controller to periodically send a control

message, specifying the control policy for a given type of

appliances to a group of residential users. The control policy

is expressed in terms of the probability that an appliance

activation request originated at a given time of the day may

be satisfied. Indeed, the activation probability function can

be loaded once a day on the gateway.

The counterpart of the absence of a feedback from the



appliances is that our control cannot provide determinis-

tic guarantees on the total power consumption, but only

probabilistic ones. In particular the control signal will be

determined in order to assure a maximum probability to

exceed a given bound on the power consumption.

This paper is an extension of our previous work appeared

in [8]. While the general application scenario is basically

the same, the analysis in this paper allows us to determine

the optimal control policy under significantly more general

assumptions: the power bound can be time-varying, the

operation time of each appliance and the delay by which

a request is postponed are no more required to be constant,

but they may be random variables with general distributions.

The rest of this paper is organized as follows. After a brief

literature review in Section II, in Section III we introduce the

model and derive the probabilistic control. In Section IV we

present some numerical results. Finally, our conclusions are

discussed in Section V.

II. RELATED WORK

The problem of direct control has been largely studied

in literature with several proposals formulating the control

mechanism under different optimization objectives, related

to the power grid reliability or operation savings. Direct

load control is the mechanism allowing electric utilities

to turn specific users’ appliances on and off during peak

demand periods. The usual approach is based on a central

controller, working on the basis of dynamic programming

optimization [9], fuzzy logic-based decisions [10], or other

profit maximization schemes [11]. An admission control

mechanism based on the exact knowledge of the total load

generated by the controlled users has been proposed in [12].

Recently, real users have been involved in direct load

control programs [3], [4]. [3] describes a pilot project where

users appliances were modified to react to critical load

conditions by reducing their energy demand when the power-

grid frequency fell below a given threshold. In the program

described in [4] an energy management device, controlled

by the energy utility, can switch on and off traditional

(unmodified) appliances in critical situations (3-4 times per

year). Conversely, the solution we envisage is intended to

address a larger set of situations where the utility may want

to impose a bound on the aggregate power consumption.

The bandwidth requirements of the control network, as

well as the privacy concerns arising in case of continuous

monitoring of users’ loads, have been addressed in some

recent work proposing some simplifications of the optimal

control schemes or distributed controllers. For example, in

[13], the tradeoff between the importance of exact load

characterization (exploration) and control (exploitation) has

been analyzed in a restless bandit framework, according

to which loads are ranked for their relevance to demand-

response actions. In [14] a distributed controller for a large

number of pool pumps is designed on the basis of a Marko-

vian Decision Process model with randomized decisions for

avoiding synchronization of pumps. An aggregated model

for a large collection of loads operating under the same

Appliance 6 8 10 12 14 16 18 20 22 24
Dishwasher. 3 9 9 3 13 0 16 38 13 3
Laundry m. 16 28 38 19 16 19 16 16 3 6

TABLE I

APPLIANCE ACTIVATION RATES [% OVER 30000 USERS]

controller is then broadcast by the utility to all the users for

driving the decision process. A similar approach based on a

generalized input signal for a group of users and distributed

control actions is pursued here but it is applied to deferrable

uninterruptible loads.

III. MODEL AND CONTROL

In our scenario the energy utility would like to enforce a

time-variant power consumption level Pg(t) during a time

interval [Ts, Te] for the set of appliances under control. Our

solution provides probabilistic guarantees: the instantaneous

power consumption Pc(t) can exceed Pg(t) with probability

at most ǫ, i.e., Prob{Pc(t) > Pg(t)} ≤ ǫ. In what follows

we use ∗ to denote the convolution operator: (f ∗ g)(t) =
∫

∞

−∞
f(x)g(t− x)dx. Moreover, for any random variable Y

we denote its probability density function, cumulative distri-

bution function and complementary cumulative distribution

function respectively as fY , FY and F̄Y .

A. Appliance Model

Our methodology applies to deferrable appliances, whose

activation time can be postponed, such as washing machines

or laundry machines. We can easily take into account differ-

ent types of appliances, but in this paper we only consider

a single class in order to keep the exposition simple. We

assume that the operation time of each appliance is a random

variable D, and all the operation times are i.i.d.. Similarly

the instantaneous power consumption of an appliance is a

random variable X(t) with known time-invariant probability

density function fX(x). This probabilistic description can

easily incorporate the uncertainty about the characteristic of

the appliance.

Some statistical studies [15] have characterized the per-

centage of users activating a specific residential appliance

during different intervals of the day. In these studies, the

day is divided into equal size intervals and the percentage

of active users is averaged in each interval. Table I has been

obtained from the data in [15] and shows the percentage

of dishwashers/laundry machines active during 2-hour time

intervals. Assuming that the user population U is large

enough and considering an observation time of one day, we

can model the activation instants of a given appliance as

a non-homogeneous Poisson process N(t) with arrival rate

λ(t). For simplicity we consider N(0) = 0, i.e. there is

no appliance active at the reference time t = 0. For our

numerical experiments we used the empirical arrival rate for

the laundry machines with 30 minute granularity.

In the absence of any control, the appliances that are active

at time t are those turned on at a time τ ≤ t for which
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Fig. 1. Example of activation request point processes. The first time axis
shows the time instants at which requests are first considered (and when
they would be served without the control). The checkmarks in the second,
third and fourth time axis respectively correspond to the requests that are
immediately satisfied, deferred once and deferred twice. The last time axis
shows the aggregate point process of the time instants at which the requests
are satisfied.

the operation time D is longer than t − τ . Their number is

distributed as a Poisson random variable [16] with parameter

(λ ∗ F̄D)(t) =
∫ t

0
λ(τ)F̄D(t − τ)dτ . Let Pois(x) denote a

Poisson random variable with parameter x, the instantaneous

power consumption P (t) at time t can then be calculated as

P (t) =

N(t)
∑

i=1

Xi(t), where N(t)∼Pois
(

(λ ∗ F̄D)(t)
)

. (1)

B. Activation Model under Probabilistic Control

We propose a control mechanism devised to modify the ap-

pliance activation process into a different non-homogeneous

Poisson process with rate λc(t), where λc(t) is determined

so that the corresponding power consumption Pc(t) satisfies

the probabilistic constraint imposed by the utility. Observe

that Pc(t) can be expressed through (1), simply replacing

λ(t) with λc(t). We first describe our control, i.e., how the

arrival rate will be modified from λ(t) to λc(t) and then we

calculate how to set λc(t).
In our framework the utility applies a time-variant ac-

tivation probability function p(t). If the user turns on an

appliance at time t, the appliance will actually start with

probability p(t), and with probability 1 − p(t) the decision

about its activation will be postponed by a random variable

T , whose range is in the interval [Tmin, Tmax] with Tmin >
0, i.e. fT (t) = 0 for t < Tmin or t > Tmax. This simple

algorithm is implemented from the smart plug, interposed

between the socket and the appliance itself. Observe that the

control is not effective when p(t) = 1. As we are going

to show, in order to be able to satisfy the constraint in

[Ts, Te], it may be needed to apply the control also before Ts,

i.e. p(t) < 1 for t < Ts. We denote Tsc the first time instant

for which p(t) < 1 (more formally Tsc = inf{t : p(t) < 1}).

The scheme operation is depicted in Fig 1. The first time

axis of the figure shows a sample of the point process (P)

of the time instants at which the user would like to turn

on the appliance. The outcomes of the Bernoulli random

variables drawn for every request determine two different

point processes that are distinguished in the second time

axis by two different marks, corresponding to the requests

that are immediately accepted (point process Pa denoted

by the checkmarks) and those that are deferred (point pro-

cess Pd denoted by the crosses). The probability p(t) is

determined exogenously and independently from the given

sample of the Poisson process P , then both Pa and Pd

are (non-homogeneous) Poisson processes respectively with

rates p(t)λ(t) and (1− p(t))λ(t), and they are independent

from each other [17, ch. 4]. The decision about each request

in Pd is postponed by T time units as it is shown in the

third time axis in Fig. 1. The shifted point process is still a

Poisson one [18] with rate

((λ(1− p)) ∗ fT )(t) =

∫ t

0

λ(τ)(1− p(τ))fT (t− τ)dτ

and independent from Pa. At its turn, the shifted point

process may be split in two point processes Pd,a and Pd,d

respectively of the requests accepted at the second trial or

further deferred. A similar reasoning leads to the conclusion

that Pd,a and Pd,d are independent Poisson processes with

rates respectively p(t)(((1−p)λ)∗fT )(t) and (1−p(t))(((1−
p)λ) ∗ fT )(t) and they are also independent from Pa.

A request can be deferred at most Kmax = ⌈Te/Tmin⌉
times. We can then build ⌈Te/Tmin⌉ independent Poisson

processes Pa,Pd,a,Pd,d,a, . . .Pd,...,d,a. Their superposition

is still a Poisson process, whose points are the time in-

stants at which the appliances become active. We denote by

λc(t) its rate. As we anticipated above, the effect of the

probabilistic control is to transform the initial uncontrolled

Poisson process P with rate λ(t) into a Poisson process

with rate λc(t). All the requests arriving in the interval

[0, Te + Tmax] are admitted in the same interval, then it

follows that
∫ Te+Tmax

0
λ(τ)dτ =

∫ Te+Tmax

0
λc(τ)dτ .

We can also define the point process Peq as the sequence

of time instants of all the requests, independently from them

being accepted or deferred, Peq = Pa∪Pd∪Pd,a∪Pd,d · · ·∪
Pd,...,d,a ∪ Pd,...,d,d whose rate we denote by λeq(t). We

observe that Peq is not in general a Poisson process. The

following equation holds for λeq(t):

λeq(t) = λ(t) +

∫ t

0

λeq(τ)(1− p(τ))fT (t− τ)dτ

= λ(t) + ((λeq(1− p)) ∗ fT )(t).

This equation expresses formally the fact that each activation

request is arriving for the first time or it is a previous request

rejected at some time τ (that occurs with probability 1 −
p(τ)) and delayed to time t − τ later. Finally, the rate of

the controlled process can be expressed simply as λc(t) =
p(t)λeq(t).



C. Tuning the Activation Probability Function: the constant

bound case

We first derive our activation probability function for the

case when the power bound is constant, i.e. Pg(t) = Pg

for t ∈ [Ts, Te]. We extend the reasoning to the case of a

time-variant bound in the following section.

We show how p(t) can be determined to guarantee that

Prob{Pc(t) > Pg} ≤ ǫ for t ∈ [Ts, Te]. The process Pc(t)
is completely characterized by the knowledge of the expected

number nc(t) of appliances active at time t (nc(t) = (λc ∗
F̄D)(t)) and the power consumption density of a single

appliance (fX(.)). By selecting p(t) the utility controls λc(t)
and then nc(t).

The first step is to calculate the maximum n∗

c value that

guarantees that Prob{Pc(t) > Pg} ≤ ǫ. In [8] we develop

the calculations for the case when the number of appliances

active at a given time instant is large, and the aggregated

power consumption can be approximated by a normal dis-

tribution. This case is also probably the most relevant from

a practical point of view, given that we are interested in

controlling a large number of appliances. We obtain that n∗

c

is the largest solution of the following equation:

(n∗

cE [X]− Pg)
2
= z21−ǫn

∗

cE
[

X2
]

, (2)

where z1−ǫ is the ǫ percentile of the standard normal

distribution.

The second step is then to determine the control p(t)
which shapes the controlled rate λc(t) so that nc(t) ≤ n∗

c

for each t ∈ [Ts, Te]. While respecting this constraint, we

would like nc(t) to be as close as possible to n∗

c , in order to

admit as many requests as possible and avoid useless delays.

We assume that a smart plug can only block an appliance

when the user tries to activate it and not later. Then we need

in general to apply the control also before Ts, otherwise if

nc(T
−

s ) > n∗

c , the constraint would not be satisfied at Ts. In

order to address this situation, we define n0
c(t, τ) to be the

expected number of active appliances in the system at time τ
assuming that no other request is accepted after t, i.e. when

λc(x) = 0 for x ∈ [t, τ ]. It holds:

n0
c(t, τ) =

∫ t

0

λc(x)F̄D(τ − x)dx. (3)

We observe that n0
c(t, τ) is a non increasing function in τ .

The control p(t) can be determined at each instant t,
by imposing that n0

c(t, τ) ≤ n∗

c for τ ∈ [Ts, Te]. Given

that we want to minimize the number of requests delayed,

p(t) should be as high as possible, while respecting this

constraint. It is evident that at a given time t ∈ [0, Te] the

control should admit new activation requests if n0
c(t, τ) < n∗

c

for τ ∈ [t, Te] and block them if n0
c(t, τ

′) > n∗

c for some

τ ′ ∈ [t, Te]. The case when n0
c(t, τ

′) = n∗

c for some

τ ′ ∈ [t, Te] needs more attention. We need to distinguish

when the constraint is met in the future (τ ′ > t) or only

in the present (τ ′ = t and n0
c(t, τ) < n∗

c for τ > t). The

two cases are shown qualitatively in Fig. 2. If τ ′ 6= t and

λc(x) = 0 for x > t, then it follows from Eq. (3) that
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Fig. 2. Time evolution of the control probability (p(t), dash-dotted curve)
and the expected number of active appliance i) in absence of control (n(t),
dotted curve), ii) in presence of control (nc(t), solid curve), and iii) if no
request is accepted after t (n0

c
(t, τ), dashed curve). Subfigure (a) shows a

case where the control is affected by the constraint being hit in the future
(p(t) = 0 for t in [Tsc, Ts], because n0

c
(Tsc, Ts) = n∗

c
). Subfigure (b)

shows a case when the control is affected by the constraint being met at
present time.

n0
c(t̃, τ) = n0

c(t, τ) for t̃ ∈ (t, τ ′] and τ > t̃. In particular

it holds n0
c(t̃, τ

′) = n0
c(t, τ

′) = n∗

c and the constraint is

hit even if no new request is admitted. We conclude that if

n0
c(t, τ

′) = n∗

c for τ ′ ∈ (t, Te], it is not possible to admit

new requests. The constraint may be met in t and only in t,
i.e. n0

c(t, t) = n∗

c and n0
c(t, τ) < n∗

c for τ > t. In this case

we can potentially admit new requests at the same rate at

which working appliances are terminating. This corresponds

to equate to zero the derivative of n0
c(t, t):

λc(t)F̄D(0) +

∫ t

0

λc(x)F̄
′

D(t− x)dx = 0,

from which the target value of λc(.) at time t can be

determined. This target value will actually be reachable if it

is smaller than λeq(t). If it is so, then p(t) can be calculated

using λc(t) = p(t)λeq(t).
Summarizing the previous discussion, the control law is:

p(t) =



















min
(

1,
−

∫
t

0
λc(x)F̄

′

D(t−x)dx

λeq(t)F̄D(0)

)

if n0
c(t, t)=n∗

c ∧ n0
c(t, τ)<n∗

c ∀τ > t,
1 if n0

c(t, τ)<n∗

c ∀τ ≥ t,
0 otherwise.

(4)



Practically speaking, the utility is going to transmit a

discrete time probability function to each appliance (or

actuator device).

D. Tuning the Activation Probability Function: the dynamic

bound case

The analysis above can be easily extended to the case

when the upper bound on the total power is time-variant.

From Prob{Pc(t) > Pg} ≤ ǫ for each t ∈ [Ts, Te], it

is possible to derive the maximum value for the expected

number of appliances active at each time instant t, that

we denote by n∗

c(t). The optimal control p(t) can then

be determined by imposing that, at each time instant t,
n0
c(t, τ) ≤ n∗

c(τ) for each τ ∈ [Ts, Te], that is at each time

t we are sure to be able to satisfy the constraint also in the

future. It holds:

p(t) =



















min
(

1,
−

∫
t

0
λc(x)F̄

′

D(t−x)dx

λeq(t)F̄D(0)

)

if n0
c(t, t)=n∗

c(t) ∧ n0
c(t, τ)<n∗

c(τ) ∀τ > t,
1 if n0

c(t, τ)<n∗

c(τ) ∀τ ≥ t,
0 otherwise.

(5)
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Fig. 3. Time evolution of the control probability (p(t), dash-dotted curve),
the dynamic bound on the expected number of active appliances and the
expected number of active appliance i) in absence of control (n(t), dotted
curve), ii) in presence of control (nc(t), solid curve), and iii) if no request
is accepted after t (n0

c
(t, τ), dashed curve).

Fig. 3 shows an example of the qualitative behavior of

the optimal control with a dynamic bound. The control will

make the expected number of active appliances nc(t) follow

as close as possible the maximum value n∗

c(t), periodically

blocking all the requests during some time intervals in order

to guarantee that the constraint is not violated in the future.

During one of such intervals, say it I = (a, b), it holds

p(τ) = 0 and nc(τ) = n0
c(a, τ) for τ ∈ I. The time

instant b corresponds to a point of tangency (with coordinates

(b, n0
c(a, b))) for the two curves (t, n0

c(a, t)) and (t, n∗

c(t)).

IV. A NUMERICAL EXAMPLE

As an example we consider the control of a group of

3000 laundry machines, whose activation rates are in Table I.

We consider that each laundry machine absorbs a constant

power equal to X = 1.5 kW and has a constant operation

time D = 90 min. (this will simplify the interpretation of
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Fig. 4. Plot (a) shows the expected and actual number of active appliances
both under and without control together with the upper bound n∗

c
(t) and

the activation probability function p(t). Plot (b) shows the corresponding
request rates.

the results). We assume each laundry machine belongs to a

different user, hence in what follows we will talk equivalently

of users, laundry machines or appliances. In this example

T is a random integer uniformly distributed in the range

[2min,8min].

Fig. 4 a) shows the expected and actual number of active

appliances without control. The maximum expected number

of appliances in the considered time interval would be 960
and it would be reached at 11am. This corresponds to an

expected aggregate power consumption of 1.440 MW.

We consider that the energy utility would like to impose a

constraint Pg(t) = 1.125 MW between 11am and 11.30am,

this constraint could be violated instantaneously with prob-

ability at most ǫ = 0.1, from which we obtain (Eq. 2) that

n∗

c(t) = 715 during this period. Moreover, if no constraint

would be imposed after 11.30am, the instantaneous power

consumption would show a significant increase immediately

after 11.30am due to all the postponed requests that would be

immediately accepted. For this reason, the power constraint

is linearly increased between 11.30am and 11.59am up to the

value 1.4 MW. Correspondingly n∗

c(t) increases from 715 to

895.

The optimal control p(t) can be calculated from Eq. 5

and it is shown in Fig. 4 a) together with the corresponding

expected and actual number of active appliances. We observe

that all the requests are admitted (p(t) = 1) up to time Tsc =



10.37am and then the two processes with and without control

overlap. Starting from Tsc, no request is accepted until Ts =
11am and indeed the expected number of active appliances

decreases and hits the constraint at Ts. Fig. 4 b) shows how,

during this interval, the rate at which requests are admitted

(λc) is indeed 0 and the rate at which requests arrive (λeq)

increases significantly. Starting from Ts, new appliances are

admitted with some probability at the same rate at which

previously admitted ones terminate until 11.30am. During

this interval the corresponding rate λc is slightly higher (10

requests per minute) than the rate of requests arriving for

the first time λ (9 requests per minute). The system is then

able to satisfy some of the requests in the backlog, and the

total request rate λeq decreases. From 11.30am to 11.59am,

the expected number of active appliances can increase. This

corresponds first to a jump in the rate λc at which new

appliances can be admitted (18 requests per minute) and a

remarkable decrease in the total request rate λeq . While a

rate of 18 requests per minute is compatible with the upper

bound, as soon as λeq becomes smaller than such value, the

rate of requests admitted has necessarily to decrease too. And

this is shown to happen in Fig. 4 b) around 11.55am. From

this instant up to 11.59am it holds λeq = λc and p(t) = 1. At

11.58am finally the backlog is exhausted and λeq = λc = λ.

The control periods ends at 11.59am and these rates will not

differ anymore, that means that the total number of requests

admitted up to time t will be the same for t ≥ 11.58am.

While nothing seems to happen after 11.58am from

Fig. 4 b), Fig. 4 a) shows an increase in the number of active

appliances a few minutes after the end of the control period

(starting from 12.07pm exactly) that can appear unexpected

at a first look, specially if compared with the corresponding

curve for the uncontrolled case. We explain this observation

as follows. By time 11.58am the same number of appliances

has been activated both in presence and in absence of the

control. What is different is that they have been activated

later in presence of the control. In particular many appli-

ances start working between 10.37am and 11.00am in the

uncontrolled case, while no appliance starts during the same

period in the controlled case. In the first case these appliances

become inactive 90 min. later, i.e. between 12.07am and

12.30am. On the contrary in presence of the control, there

is no appliance terminating during such period, while new

requests are accepted. For this reason we observe a steady

increase in the number of active appliances until 12.30. With

similar considerations we can explain how the number of

active appliances evolves for later times.

This example shows how load shifting of appliances with

long operation time can have consequences well after the

end of the interval the control is applied. It is then important

to correctly shape the power bound for long time intervals.

V. CONCLUSIONS AND FUTURE WORKS

The role of direct load control in modern power grids

has been shown to be beneficial for several applications.

However, in the case of small individual energy loads, these

benefits can be appreciable only if a large number of users

are involved in the control process. The main contribution

of this paper is proposing a load control mechanism whose

deployment requires minimal communication overhead in

order to allow a large scale deployment. The idea is to work

on deferrable loads whose activation requests are admitted

by a local energy controller on the basis of a probabilistic

admission function. This function is periodically signaled by

the energy utility according to the expected load demand

and desired power limit. In the current scheme, we assume

that the expected load demand is simply characterized by

collecting historical data, quantifying the appliance arrival

rate in different intervals of the day, and assuming that

these rates do not change day by day. An interesting model

extension, that we are considering as a future work, is

coupling the proposed control scheme with a mechanism for

estimating the actual time-varying arrival rate of activation

requests from the instantaneous aggregated load in a privacy-

preserving way.
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