Jitter-Adaptive Dictionary Learning - Application to Multi-Trial Neuroelectric Signals

Abstract : The simultaneous analysis of multiple recordings of neuronal electromagnetic activity is an important task requiring sophisticated and extremely noise robust techniques. A general goal is to find a representation of the similarities (e.g. repeating waveforms) as well as the differences (e.g. varying shape, latency, phase, or amplitude of waveforms) across the signals. Here, we present an extension to dictionary learning that explicitly accounts for small variations in latency and phase of atoms.
Type de document :
Poster
International Conference on Learning Representations 2013, May 2013, Phoenix, Arizona, United States. 2013
Liste complète des métadonnées

https://hal.inria.fr/hal-01094663
Contributeur : Sebastian Hitziger <>
Soumis le : lundi 5 janvier 2015 - 18:08:01
Dernière modification le : jeudi 18 janvier 2018 - 01:29:14
Document(s) archivé(s) le : lundi 6 avril 2015 - 10:06:36

Fichier

posterJADL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01094663, version 1

Citation

Sebastian Hitziger, Maureen Clerc, Alexandre Gramfort, Sandrine Saillet, Christian Bénar, et al.. Jitter-Adaptive Dictionary Learning - Application to Multi-Trial Neuroelectric Signals. International Conference on Learning Representations 2013, May 2013, Phoenix, Arizona, United States. 2013. 〈hal-01094663〉

Partager

Métriques

Consultations de la notice

647

Téléchargements de fichiers

120