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Abstract

In this work, we consider a well-known and well-studied system of para-

consistent logic which is due to Newton da Costa, and present a topological

semantics for it.
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1 Introduction

In a paraconsistent logic, contradictions do not entail everything. Namely, in a
paraconsistent logic, there are some formula ϕ, ψ such that {ϕ,¬ϕ} 6⊢ ψ for a
logical consequence relation ⊢. In this work, we will focus on a well-known and
well-studied paraconsistent logic, which is due to Newton da Costa, and present
a topological semantics for it.

Da Costa’s hierarchical systems Cn and C∗

n are one of the earliest examples
of paraconsistent logic (da Costa, 1974). Da Costa systems Cn where n < ω
are consistent and finitely trivializable. Yet, for the limit ordinal ω, it is possible
to obtain a logic Cω which is not finitely trivializable (da Costa & Alves, 1977).
In this work, we focus on Cω and its first-order cousin C∗

ω both of which are
paraconsistent.

Da Costa systems are not unfamiliar. As Priest remarked, the logic Cω can
be thought of as the positive intuitionistic logic with dualized negation to give
truth value gluts (Priest, 2011). We define Cω with the following postulates
(da Costa, 1974; da Costa & Alves, 1977).

1. ϕ→ (ψ → ϕ)

2. (ϕ→ ψ) → ((ϕ→ (ψ → χ)) → (ϕ→ χ))

3. ϕ ∧ ψ → ϕ

4. ϕ ∧ ψ → ψ

5. ϕ→ (ψ → ϕ ∧ ψ)
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6. ϕ→ ϕ ∨ ψ

7. ψ → ϕ ∨ ψ

8. (ϕ→ χ) → ((ψ → χ) → (ϕ ∨ ψ → χ))

9. ϕ ∨ ¬ϕ

10. ¬¬ϕ→ ϕ

The rule of inference that we need is modus ponens: ϕ,ϕ→ ψ ∴ ψ.
Based on this axiomatization, Baaz gave a Kripke-type semantics for Cω

(Baaz, 1986). Baaz’s Cω-Kripke model is a tuple M = 〈W,≤, V, T 〉 where W
is a non-empty set, ≤ is a partial order on W , and V is a valuation that returns
a subset of W for every propositional variable in the language. We will call the
members of W as possible worlds or states. By accessible states from w ∈ W , we
will mean the set {v : wRv}. The additional component T is a function defined
from possible worlds to the sets of negated propositional forms. The imposed
condition on T is the monotonicity: w ≤ v implies T (w) ⊆ T (v). Monotonicity
condition resembles the hereditary condition of intuitionistic logic. The valua-
tion respects the monotonicity and is assumed to return upsets. In this context,
an upset U is a subset of W such that if w ∈ U and w ≤ v, then v ∈ U .

Also note that the relation ≤ is a partial order rendering the frame 〈W,≤〉
an S4-frame. The fact that the frame of Baaz’s model is S4 will be central in
our topological investigations later.

One of the most interesting properties of da Costa systems is the principle
of non-substitution for negated formulas. For instance, even if p and p ∧ p
are logically equivalent, i.e. p ≡ p ∧ p, we do not necessarily have that ¬p ≡
¬(p ∧ p) in da Costa systems, where ≡ denotes logical equivalence. In Baaz’s
construction, the function T returns a set of formulas which are negated at that
possible world. Yet, for a possible world w, the set T (w) is not necessarily a
theory as it need not be closed under logical equivalence. In short, at w, we can
have ¬p ∈ T (w), but this does not imply that ¬(p ∧ p) ∈ T (w). Monotonicity of
T , on the other hand, reflects the intuitionistic side of da Costa systems. In the
partially ordered Kripkean frame for Cω, children nodes have the same formulas
as their parents and possibly more under T .

Baaz gave a Kripkean semantics for Cω as follows (Baaz, 1986). But first, let
us set up some notation. We put ¬0ϕ ≡ ϕ and ¬n+1ϕ ≡ ¬(¬nϕ) for a formula
ϕ which does not include a negation sign in the front.

w |= p iff for all v such that w ≤ v, v |= p for atomic p
w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ
w |= ϕ ⊃ ψ iff for all v such that w ≤ v, v |= ϕ implies v |= ψ
w |= ¬1ϕ iff ¬1ϕ ∈ T (w) or ∃v.v ≤ w and v 6|= ϕ
w |= ¬n+2ϕ iff ¬n+2ϕ ∈ T (w) and w |= ¬nϕ, or

∃v.v ≤ w and v 6|= ¬n+1ϕ
w |= ϕ1, . . . , ϕn → iff ∀v.w ≤ v, w |= ϕ1, . . . , w |= ϕn imply

ψ1, . . . , ψn v |= ψ1 or . . . or v |= ψn
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Let us now briefly comment on the semantics. First of all, the above se-
mantics admits the hereditary condition for propositional variables. The truth
of propositional variables persists throughout the accessible states. This is an
interesting property that resembles what is commonly known as the hereditary
condition of intuitionistic logic. Another similarity between da Costa systems
and the intuitionistic logic is the way the semantics of implication is defined.
Perhaps the most interesting and distinguishing part of the above semantics is
the semantics of negation. A negated formula is true at a state w if it is in T (w)
or there is a predecessor state at which the formula does not hold. It is impor-
tant to underline that the function T renders the negation as a non-functional
operator. This is another way of saying that substitution principle for negated
formulas does not hold in da Costa systems. Finally, in the syntax of the oper-
ator →, we can very well have the empty set as the antecedent. The statement
∅ → p, q will be shortened as → p, q.

By using the proof theory of (propositional) intuitionistic logic and Gentzen
style calculus, Baaz showed the soundness, completeness and decidability of
this system (Baaz, 1986). We will henceforth denote this system as KCω.

2 Topological Models TCω

In this section, we give a topological semantics for da Costa’s system Cω, and
call our formalism as TCω. The topological semantics precedes the Kripke se-
mantics, and was first presented in early 1920s (Goldblatt, 2006). The major
developments in the field of topological semantics for (modal) logics have been
initiated by J. C. C. McKinsey and Alfred Tarski in 1940s in a series of papers
(McKinsey & Tarski, 1944; McKinsey, 1945; McKinsey & Tarski, 1946).

A topology σ is a collection of subsets of a set S that satisfies the following
conditions. The empty set and S are in σ, and σ is closed under arbitrary unions
and finite intersections. The elements of σ are called opens. Complement of
an open set is called a closed set. A topological space is defined as the tuple
(S, σ). For a given set U , the interior operator Int returns the largest open set
contained in U whereas the closure operator Clo returns the smallest closed set
that contains U . For a set U , we define the boundary of U as Clo(U)−Int(U), and
denote it as ∂(U). Therefore, by definition, closed sets include their boundary
whereas open sets do not.

In the classical modal case, McKinsey and Tarski associated the modal op-
erator � with the topological interior operator (and, dually ♦ with the closure
operator), and observed that the interior and closure operators behave as S4

modalities (normal, reflexive and transitive). The well-known McKinsey - Tarski
result showed that S4 is the modal logic of topological spaces, in fact, of any
metric, separable, dense-in-itself space. This result has been extended to var-
ious other non-classical logics, and the topological semantics for intuitionistic
and some paraconsistent logics have also been given (Goodman, 1981; Mints,
2000; Başkent, 2013).
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In this section, we first give a topological semantics for Cω based on the Krip-
kean semantics, and then we discuss various topological concepts that relates
topological spaces and TCω.

2.1 Topological Semantics

The language of TCω is the language of propositional logic with the usual
Boolean conjunction, disjunction and implication, and we will allow iterated
negations. We denote the closure of a set X by Clo(X). If a set {x} is a single-
ton, we write Clo(x) instead of Clo({x}) provided no confusion arises. Also note
that in this case Clo(x) is the intersection of all closed sets containing x.

The language of TCω is built by using a countable set of propositional vari-
ables which we denote by P. Now, we start with defining TCω models.

Definition 2.1. A TCω model M is a tuple M = 〈S, σ, V,N〉 where S is a non-
empty set, σ is an Alexandroff topology on S, V : P → ℘(S) is a valuation
function, and N is a (full) function which takes possible worlds s ∈ S as inputs
and returns sets of negated propositional forms (possibly empty) in such a way
that w ∈ Clo(v) implies N(w) ⊆ N(v).

Here, we resort to the standard translation between topological models and
Kripke frames. Given a topological space, we put w ≤ v for w ∈ Clo(v) to
obtain a partially ordered tree, which produces the Kripke frame. Conversely,
given a Kripke frame with a partial order, we consider the upward closed (or
dually, downward closed) branches of the tree as open sets (dually, closed sets)
to construct a topology. The topology we obtain from a given Kripke frame is
an Alexandroff topology which is closed under arbitrary intersections. In other
words, since the Baaz’s frames are already S4, the topology we obtain (after
translating the given S4 frame) is an Alexandroff topology. We refer the reader
to (van Benthem & Bezhanishvili, 2007) for a detailed treatment of the subject
from a modal logical perspective.

Interestingly, the fact that we obtain Alexandroff spaces in TCω raises the
question of handling non-Alexandroff spaces in the topological models of Cω.
This is a very interesting question in-self, and can help us identify a variety of
formalisms that are weaker than Cω. In order not to digress from our current
focus, we leave it for a future work.

Now, we give the semantics of TCω as follows. We abbreviate ¬0ϕ := ϕ, and
¬n+1ϕ := ¬(¬nϕ) for a ϕ which does not include a negation sign in the front.
Similarly, we assume that the valuation function V returns closed sets (Başkent,
2013).
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w |= p iff ∀v.w ∈ Clo(v), v |= p for atomic p
iff w ∈ V (p)

w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ
w |= ϕ ⊃ ψ iff ∀v.w ∈ Clo(v), v |= ϕ implies v |= ψ
w |= ¬1ϕ iff ¬1ϕ ∈ N(w) or ∃v.v ∈ Clo(w) and v 6|= ϕ
w |= ¬n+2ϕ iff ¬n+2ϕ ∈ N(w) and w |= ¬nϕ or

∃v.v ∈ Clo(w) and v 6|= ¬n+1ϕ
w |= ϕ1, . . . , ϕn → iff ∀v.w ∈ Clo(v), v |= ϕ1, . . . , v |= ϕn imply

ψ1, . . . , ψn v |= ψ1 or . . . or v |= ψn

Following the usual representation, we denote the extension of a formula ϕ
in a model M by [ϕ]M , and define it as follows [ϕ]M := {w :M,w |= ϕ}.

Now we can discuss the satisfiability problem (SAT) and its complexity in
logic Cω and KCω. First of all, note that the complexity of SAT for basic modal
logic is known to be PSPACE-complete. In Kripkean frames, searching for a
satisfying assignment may not be efficient timewise, but it uses the space effi-
ciently yielding a PSPACE-complete complexity. This procedure can be thought
of as searching the branches of a Kripke model (which is a tree or a forest)
starting from the root. Once you are done with one branch, you do not need
to remember it, thus you can reuse the same space. And, the extent of the
tree you need the search, i.e the depth, solely depends on the length of the for-
mula. Therefore, the given formula determines the space you need to check.
In KCω, the only issue is checking the satisfiability for negation. However, a
careful examination shows that it has a rather immediate solution. The case
for ¬1 requires two operations: check whether a given ¬1 is in the image set
of T at the given state, and check if there exists a state that is accessible from
the current state with the desired condition. The latter part is PSPACE consid-
ering the standard modal argument for SAT. The prior part is also polynomial
- it is a sequential check for membership. Moreover, one can easily construct a
polynomial transformation from modal SAT with topological semantics to KCω

satisfiability yielding the fact that SAT for KCω is also PSPACE. Considering ¬n

as a nested (intuitionistic) modality, one can come up with the obvious transla-
tion giving the PSPACE-completeness of the satisfiability problem for KCω. In
order to show the complexity of TCω, we need to reduce it to KCω. Yet, we
already saw how to obtain a topological model given a Kripke model, and this
translation reduces KCω to TCω.

Now, based on the above mentioned argument, and the efficient model
transformations between topological spaces and Kripke frames which we dis-
cussed earlier, it is immediate to observe that SAT for TCω is also PSPACE-
complete.

Theorem 2.2. The satisfiability problem for both KCω and TCω is PSPACE-

complete.

Corollary 2.3. Both KCω and TCω are decidable.
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In his work, Baaz gave several results using Kripke semantics (Baaz, 1986).
Here, we observe that they hold in TCω as well. Our aim is to clarify the use
of topological concepts in TCω, and make sure that the function N works as
expected. The following results will also exemplify the behavior of negation in
TCω.

Proposition 2.4. w |= ϕ iff for all v such that w ∈ Clo(v), we have v |= ϕ.

Proof. The proof is by induction on the length of the formula. The only interest-
ing case is the negation. We assume ϕ ≡ ¬1ψ. Then, let us suppose w |= ¬1ψ.
By definition, either ¬1ψ ∈ N(w) or there exists a x such that x ∈ Clo(w) and
x 6|= ψ. Now, let v be such that w ∈ Clo(v). Then, by the definition of N , we
observe N(w) ⊆ N(v). Thus, ¬1ψ ∈ N(v). On the other hand, w ∈ Clo(v) im-
plies that Clo(w) ⊆ Clo(v). Therefore, w ∈ Clo(w) ⊆ Clo(v) with v 6|= ψ. Then,
we have either ¬1ψ ∈ N(w) or there exists x such that x ∈ Clo(v) with x 6|= ψ.
Thus, v |= ¬1ψ.

The cases for ¬n+1 are similar by using the induction hypothesis. ⊠

Proposition 2.5. w 6|= ϕ implies that there is no v ∈ Clo(w) such that v 6|= ¬ϕ.

Proof. Let w 6|= ϕ. Towards a contradiction, we assume that there is a v ∈ Clo(w)
with v 6|= ¬ϕ. On the other hand, by Proposition 2.4, v 6|= ¬ϕ means that for
all w such that v ∈ Clo(w), we have w 6|= ¬ϕ. Thus, we conclude w 6|= ϕ and
w 6|= ¬ϕ. Contradiction. ⊠

Proposition 2.6. w |= ¬¬ϕ→ ϕ.

Proof. We will show that w 6|= ϕ implies w 6|= ¬¬ϕ. Let w 6|= ϕ. Then, by
Proposition 2.5, there is no v ∈ Clo(w) with v 6|= ¬ϕ. Then, by definition of ¬2,
we conclude that w 6|= ¬¬ϕ. ⊠

Substitution principle for negated formulas ¬ϕ↔ ¬(ϕ∧ϕ) does not hold in
KCω. Next, we observe that it does not hold in TCω as well.

Proposition 2.7. ¬ϕ↔ ¬(ϕ ∧ ϕ) is not valid.

Proof. Let us take a state w such that Clo(w) ⊆ [ϕ] and ¬ϕ ∈ N(w). Thus,
w |= ¬ϕ. We now stipulate further that ¬(ϕ ∧ ϕ) 6∈ N(w) to get a counter-
model. ⊠

Proposition 2.8. w |=→ ϕ,¬ϕ.

Proof. We recall that → ϕ1, . . . , ϕn means that ϕ1 ∨ · · · ∨ ϕn holds. Then, the
result follows from the axiomatization of Cω. ⊠

For the completeness of our arguments in this work, we now present the
semantical counterpart of cut elimination. The proof is a straightforward ma-
nipulation of formulas, hence, we skip it.

Proposition 2.9. w |= Π → Γ, ϕ and w |= ϕ,∆ → Λ imply w |= Π,∆ → Γ,Λ.
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We now state the soundness theorem without a proof.

Theorem 2.10. ⊢ ϕ→ ψ implies |= ϕ→ ψ.

Baaz used Gentzen style sequent calculus to show the completeness of his
system. He then concluded that if Π → Γ is not provable without cuts, there
is a KCω-Kripke model M = 〈W,≤, v, T 〉 such that 0 ∈ W and 0 6|= Π′ → Γ′

where Π′ ≡ Π,∆ and Γ′ ≡ Γ,Ψ. Namely, M 6|= Π → Γ. Here, 0 is the lowest top
sequent in the reduction tree of Π → Γ.

Now, in order to show the completeness of our system TCω, we will re-
sort to the model translation which we mentioned earlier. Given a KCω model
M = 〈W,≤, v, T 〉, we can construct a TCω model M ′ = 〈S, σ, V,N〉 as fol-
lows. Let S := W , and V := v. Now, we need to define the topology σ, and
the open and closed sets in σ. Define closed sets as the upsets, and observe
that v ∈ Clo(w) whenever v ≤ w. For a tree model, it is easy to observe that
the closed sets we defined produces an Alexandroff topology, as we already ob-
served. Furthermore, we put N(w) := T (w). Therefore, given a TCω model,
we can effectively convert it to KCω which is known to be complete. This is
the immediate method to show the completeness of TCω. Alternatively, we can
start with the logic TCω, and give a topological completeness proof. This is
what we achieve next.

For the completeness of TCω, we use maximal nontrivial sets of formulas.
A set X is called trivial if every formula in the language is deducible from X,
otherwise it is called nontrivial. A nontrivial set X is called a maximal nontrivial

set if ϕ /∈ X, then X ∪ {ϕ} is trivial, for an arbitrary formula ϕ.
We start by observing the following.

Proposition 2.11. If Γ is a maximal non-trivial set of formulas, then we have

Γ ⊢ ϕ iff ϕ ∈ Γ.

Using canonical sets, we construct the canonical TCω model 〈S′, σ′, V ′, N ′〉.
Let us first start with the canonical topological space. The canonical topological
space is the pair 〈S′, σ′〉 where S′ is the set of all maximal non-trivial sets,
and σ′ is the set generated by the basis B = {¬̂ϕ : any formula ϕ} where we
define ϕ̂ := {s′ ∈ S′ : ϕ ∈ s′}. Here, our construction is very similar to the
classical case: instead of (classical) modal formula, we use negated formulas in
the construction of the canonical model (and its topology). The reason for this
choice is the fact that in TCω negated formulas resort to the closure operator -
similar to the modal operators in the classical case.

In order to show that B is a basis for the topology σ′, we need to show that

1. For any U,U ′ ∈ B and any x ∈ U ∩U ′, there is Ux ∈ B such that x ∈ Ux ⊆
U ∩ U ′,

2. For any x ∈ S′, there is U ∈ B with x ∈ U .

For the first item, we observe that ¬ϕ̂ ∧ χ = ¬̂ϕ∧¬̂χ. Therefore, U ∩U ′ ∈ B
which argues for finite intersection.
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For the second item, we observe that ¬⊥ ∈ x for any maximal consistent

set x in the canonical TCω. Therefore, for any x ∈ S′, there is a ¬̂⊥ ∈ B that
includes x.

This argument shows that B is a basis for the topology of the canonical
model.

Now, the valuation V ′ is defined in the standard way: V ′(p) := {s′ ∈ S′ : p ∈
s′}. Similarly, we define N ′ from S′ to sets of formulas, and put, N ′(s′) ⊆ N ′(t′)
if s′ ∈ Clo(t′) for s′, t′ ∈ S′. Additionally, we impose that N ′(s′) ⊆ s′ to handle
the negated formula correctly. Another way of looking at it is to include N ′(s′)
into s′ in the construction of the maximal non-trivial set s′. Therefore, we
close maximally consistent sets under logical connectives and also under the N ′

function. This simply reflects how the negation is defined in TCω.
The truth of classical Booleans are defined as usual in the canonical models.

For negation, we put the following.

s′ |= ¬1ϕ iff ¬1ϕ ∈ N ′(s′) or ∃t′ ∈ Clo(s′) such that t′ 6|= ϕ

For the truth lemma, we only need to observe that, s′ |= ϕ if and only if
ϕ ∈ s′.

The standard Boolean cases are immediate. So, let us take ϕ = ¬1ψ for some
ψ. For “truth to membership” direction, if ¬1ψ ∈ N ′(s′), then we are done as
N ′(s′) ⊆ s′. Otherwise, we need to find a t′ in Clo(s′) which does not satisfy ψ.
Since the topology σ is constructed by using a basis with opens, we can select t′

from the boundary ∂(s′) which is not in the interior of the extension, but in the
closure of the extension by definition.

For instance, if the space is discrete and the boundary is empty, then we can
take any point from s′ as each subset of the space is clopen (both closed and
open) so that Clo(s′) = s′ = Int(s′). Therefore, let us here argue assuming that
the boundary is not empty (if it is, we still know what to do as described above).

Take such a t′ ∈ ∂(s′) such that t′ 6|= ψ. Then, by the induction hypothesis,
ψ /∈ t′. The set t′ is maximal and non-trivial, so ¬1ψ ∈ t′. Recall that t′ ∈ Clo(s′),
thus ¬1ψ ∈ Clo(s′).

This was the direction from “truth to membership”. The direction from
“membership to truth” is similar using some properties of closure operators,
so we skip it. Similarly, we leave the case ϕ = ¬n+2ψ to the reader as it only
requires an inductive proof.

After establishing the truth lemma, we have the following completeness re-
sult.

Theorem 2.12. For any set of formulas Σ in TCω, if Σ |= ϕ then, Σ ⊢ ϕ.

Proof. Assume Σ 6⊢ ϕ. Then, Σ ∪ {¬ϕ} is non-trivial, and can be extended to a
maximal non-trivial set Σ′. By the truth lemma, Σ′ |= ¬ϕ yielding Σ′ 6|= ϕ. This
is the counter-model we were looking for. ⊠

So far, we have showed that Baaz’s results in KCω can be carried over to
TCω without much difficulty. This is achieved relatively easily as a consequence
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of the immediate and effective translation betweenKCω and TCω, and the simi-
larity between the classical modalities and the da Costa negation operator. Such
similarities between classical modalities and paraconsistent operators were also
addressed in some other work (Béziau, 2005; Béziau, 2002).

2.2 Further Results

In this section, we reconsider TCω models in various topological spaces, and
investigate how topological properties and TCω models interact. Here, our
focus will be separation axioms, regular spaces and connected spaces. The main
motivation behind choosing these structures is the fact that the semantics of
the negation operator in TCω deals with the closure (and then indirectly, with
the boundary) of the sets. Thus, topological notions that are relevant to the
boundary become our main subject in this section.

We also remind the reader that our treatment is by no mean exhaustive. Var-
ious other topological, mereotopological and geometrical notions can further be
investigated within the framework of da Costa logics or paraconsistent logics in
general. Nevertheless, in this work, we confine ourselves to the aforementioned
issues, and leave the rest for future work.

2.2.1 Separation Axioms

Let us first recall some of the well-known separation axioms for topological
spaces. Two points are called topologically indistinguishable if both have the
same neighborhoods. They are topologically distinguishable if they are not
topologically indistinguishable. Indiscrete space (trivial topology) is perhaps
the simplest example where any two points are topologically indistinguishable.
Moreover, two points are separated if each of the points has a neighborhood
which is distinct from the other’s neighborhoods. Two points x, y are distinct if
x 6= y.

Separation axioms present an interesting perspective to analyze paraconsis-
tent models. Traditionally, paraconsistent logics are known as the logics with
truth value gluts as opposed to intuitionistic logics which have truth value gaps.
Theory of truth value gluts suggests that some propositions can have multiple
(including inconsistent) truth values. Topological models then identifies the su-
perimposed truth values with the intersection of sets that denote the truth and
falsity of logical formulas. Separation axioms become relevant when we want
to separate the superimposed truth values in order to render the model and the
formulas consistent.

Let us now define the separation axioms that we need. A topological space
is called

• T0 if any two distinct points in it are topologically distinguishable,

• T1 if any two distinct points in it are separated,

• R0 if any two topologically distinguishable points are separable,
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• T2 if any two distinct points in it are separated by neighborhoods,

• T21/2 if any two distinct points in it are separated by closed neighbor-
hoods.

While discussing the semantics of TCω above, we made use of the relation
w ∈ Clo(v) quite often. This relation is called the specialization order: w ≤ v if
and only if w ∈ Clo(v). It is a partial-order if and only if the space is T0. In this
case, if the relation ≤ is symmetric, then the space we obtain is R0. Throughout
the paper, we will call a model a Tx-model if its topological space is a Tx space
for x ∈ {0, 1, 2, 21/2}.

We do not force TCω models to be T1 models or even R0 models. Then the
natural question is the following: Can we have TCω models which are not even
T0 or T1?

Proposition 2.13. Given a KCω model M , the TCω model M ′ obtained from M
is T0.

Proof. Given a KCω model M , the specialization order that we defined above,
generates a TCω model M ′. In this case, the topology we obtain in M ′ is an
Alexandroff topology as the specialization order of the Alexandroff topology is
precisely the partial order that comes from the Kripke model. Therefore, since
the specialization order is a pre-order, the space we obtain is T0, so is M ′. ⊠

In Proposition 2.13, the model M ′ is proved to be T0. Therefore, it is worth-
while to note that M ′ is not necessarily T1. Alexandroff spaces are T1 if only if
they are discrete - each s having a neighborhood of {s} only (Arenas, 1999).

Now, we focus on T21/2 spaces as the closed sets and closure operator play
a central role in paraconsistent semantics. Our main theorem is the following.

Theorem 2.14. Let M = 〈S, σ, V,N〉 be a T21/2 TCω model which admits true

contradictions, then N cannot be empty.

Proof. In TCω (and similarly in KCω) models, N (or T ) function tracks the
negated formulas in an ad hoc way. In this fashion, nonemptiness of N means
that the model cannot have superimposition of truth values which can produce
inconsistencies. Intuitively, this is because of the assumption of the separation
axiom. Let us now see the proof.

Let M = 〈S, σ, V,N〉 be a T21/2 TCω model. Assume N is empty. Let w be a
state where we have a true contradiction ϕ ∧ ¬ϕ for some ϕ. Thus, w |= ϕ, and
moreover, since N is empty, there is v ∈ Clo(w) such that v 6|= ϕ. Since we are in
a T21/2 space, w and v must be separable. However, since v ∈ Clo(w), it means
that v is in the intersection of all closed sets in σ containing w. Thus, they
are not separable by closed neighborhoods. Contradiction. Thus, N cannot
be empty, and such a point v cannot exists in a T21/2 space that admit true
contradictions. ⊠

The contrapositive of Theorem 2.14 can also be useful, let us specify it here.
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Proposition 2.15. Let M = 〈S, σ, V,N〉 be a TCω space with true contradictions.

If N is empty, then M cannot be T21/2.

In order to see the correctness of the above proposition in an example,
we will construct the following model. Now, under the assumption that N
is empty, let us consider a formula ϕ and its negation ¬ϕ. Then, we choose
w,w′ in a way that w ∈ [ϕ] and w′ ∈ [¬ϕ], and also that the only closed
sets around w and w′ will be [ϕ] and [¬ϕ] respectively. Let S = {1, 2, 3}, and
σ = {∅, S, {1, 2}, {2, 3}, {2}}. Let [ϕ] = {1, 2}, and [¬ϕ] = {2, 3}. (Consider the
formula ϕ ∧ ¬ϕ at 2.) Then, observe that the points 1 and 3 are not separable
by closed sets. Thus, this model cannot be T21/2. However, if N was not empty,
in an ad-hoc way, we would have defined the truth of negated formula ¬ϕ in a
way to overcome this issue by letting N(2) = {¬ϕ}.

Mortensen, in an earlier paper, investigated the connection between similar
separation axioms and paraconsistent theories where he made several observa-
tions about discrete spaces, and T1 and T2 spaces (Mortensen, 2000).

Moreover, similar connections can be made between paraconsistent logics,
topological semantics, and the topological properties of connectedness and con-
tinuity. We refer the reader to (Başkent, 2013) where such properties are stud-
ied in detail.

2.2.2 Regular Spaces

Regular (open) sets are the sets which are equal to the interior of their clo-
sure. They play an important role not only in topology but also in mereotopol-
ogy where the relationship between parts and the whole is investigated (Pratt-
Hartman, 2007).

Even if we will not dwell on it further in this paper, it is important to under-
line that the algebra of closed sets and the topological models for paraconsistent
logic do have the same algebraic structure, they both are co-Heyting algebras.
Co-Heyting algebras are duals of Heyting algebras which were first proposed as
the algebraic counterpart of intuitionistic logics. Some region based logics, on
the other hand, utilize both Heyting and co-Heyting algebras (Mormann, 2012;
Stell & Worboys, 1997). From an algebraic perspective, we observe that reg-
ular sets play an important role in paraconsistency. Now we will consider the
matter from a model theoretical perspective, and focus on TCω. We start with
definitions.

Definition 2.16. Let 〈S, σ〉 be a topology. A subset X ⊆ S is called a regular

open set if X is equal to the interior of its closure, namely if X = Int(Clo(X)).
Similarly, a subset Y ⊆ S is called a regular closed set if Y is equal to the closure
of its interior, namely if Y = Clo(Int(Y )). We call a space regular open (closed)

if all the open sets (or dually, closed sets) are regular. A model is regular open

(closed) if its topological space is regular open (closed).

For example, regular open sets in the standard topology of R2 are the open
sets with no “holes” or “cracks”. Also note that the complement of a regular
open is a regular closed and vice versa.
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We now observe the following.

Proposition 2.17. Let M = 〈S, σ, V,N〉 be a TCω model with discrete topology

σ. If N = ∅, then we have w |= ¬ϕ if and only if w 6|= ϕ for all w ∈ S and for all

ϕ.

Proof. It is a well-known fact that, in a discrete topology every subset is closed
(or open dually). In this proof, similar to our earlier remarks for the same issue
(such as in the proof of Theorem 2.14), we assume that N is empty. Let us see
the proof now.

First, we assume that N is empty. Then, let us suppose, for an arbitrary w ∈
S, an arbitrary formula ϕ, we have w |= ¬ϕ. Then, by definition, considering the
discrete topology and the emptiness of N , we have w 6|= ϕ. Converse direction
is also similar, and we leave it to the reader. ⊠

Clearly, the converse of the above statement is not necessarily true, as it is
very much possible to add “redundant” elements to N to make it non-empty.

2.2.3 Connectedness

A topological space is called connected if it cannot be written as the disjoint
union of two open sets. We define connected component as the maximal con-
nected subset of a given space. Moreover, in a connected topological space
〈S, σ〉, the only subsets with empty boundary are S and ∅. This fact, together
with the semantics of the negation, plays an important role in TCω.

Proposition 2.18. Let M = 〈S, σ, V,N〉 be a TCω model that admits a true

contradiction whose extension is in the topology. If the space is disconnected and

|M | > 1, then N cannot be empty.

Proof. Proof follows from the fact that in disconnected spaces, there are sets
with empty boundary other than S itself and the empty set. So, we briefly
mention the proof idea here. Let a contradiction ϕ ∧ ¬ϕ satisfied in the model.
Then, in this case, the positive ϕ and negative ϕ conjuncts of the contradiction
will lie in the different connected components. However, if N is empty, it means
that the extensions of each conjunct is connected via the boundary - which
creates the contradiction as the space is assumed to be disconnected. ⊠

Again, the contrapositive of the above theorem can help clarify the matter.

Proposition 2.19. If N is empty, and M admits true contradictions whose exten-

sions are in the topology, then M cannot be disconnected.

3 Topological First-Order Models TC
∗
ω

The logic Cω can be extended to first-order level by introducing quantifiers, and
the resulting first order da Costa logic is called C∗

ω (da Costa, 1974). In his
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work, Baaz considered only the propositional case for KCω, and did not take
the next step to introduce a Kripke semantics for C∗

ω. Priest, later on presented a
Kripke semantics and tableaux style completeness for first-order da Costa logic
(Priest, 2011). Here, we introduce a topological semantics for C∗

ω, and call our
system TC∗

ω.
First, let us set a piece of notation. For a formula ϕ, we abbreviate ϕ◦ :=

¬(ϕ ∧ ¬ϕ). Moreover, we let, ϕ(1) := ϕ◦, ϕ(n) := ϕ(n−1) ∧ (ϕ(n−1))◦ for 2 ≤
n ≤ ω. We will often abuse the notation, and write ϕn instead of ϕ(n) for easy
reading.

Let us now start with introducing the axioms for C∗

ω. The axioms of C∗

ω

are the axioms of Cω together with the following additional axioms (da Costa,
1974).

1. ∀xF (x) → F (y).

2. F (y) → ∃xF (x).

3. ∀x(F (x))(n) → (∀xF (x))(n) for n ≤ ω.

4. ∀x(F (x))(n) → (∃xF (x))(n) for n ≤ ω.

5. Given F and F ′, if either one is obtained from the other by replacing
bound variables or by suppressing vacuous quantification (without confu-
sion of variables), then F ↔ F ′ is an axiom.

The rules of inference are modus ponens, ϕ → F (x) ∴ ϕ → ∀xF (x), and
F (x) → ϕ ∴ ∃xF (x) → ϕ. Based on the given axiomatization, C∗

n is finitely
trivializable for n < ω while C∗

ω is not. Also, it is important to note that C∗

0 is
the classical first-order logic.

Our goal now is to give a topological semantics for C∗

ω. In order to achieve
this, we will make use of denotational semantics akin to Awodey and Kishida’s
work on topological first-order classical modal logic. In their work, they used
sheaves to express the quantification domain of predicated modal formulas
(Awodey & Kishida, 2008). Their semantics is elegant, and simply explains how
we should read predication in a natural way in the case of topological modal
models. The use of denotational semantics will also be helpful for TC∗

ω as it
presents a quite natural way to handle the non-truth functional behavior of the
negation.

We start by introducing TC∗

ω models, and the related denotational interpre-
tation function.

Definition 3.1. A first-order topological da Costa model TC∗

ω is given as the
tuple 〈S,D, | · |, N∗, σ〉 where S is a non-empty set with topology σ on it, ∅ 6=
D ⊆ S is called the domain of individuals, | · | is a denotational interpretation
function that assigns denotations in S to formulas, and N∗ is the extension of
the propositional negation function N to the first-order case defined over S.
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Let us now give a brief explanation of TC∗

ω models here. The denotational
interpretation function | · | takes formulas (with or without free variables), and
returns individuals from S. DomainD, on the other hand, is given to precise the
quantification. Similar to first-order classical modal logic, we use the domain
set in the definition of the semantics of the quantifiers (Fitting & Mendelsohn,
1998). Here, we take D as a subset of S, so that we can make use of the
topology σ defined on S for the objects in the domain. Alternatively, domain D
and the topological space S can be taken as disjoint, and there can be defined a
homeomorphic map from D to S (Awodey & Kishida, 2008). Nevertheless, for
simplicity, we choose the former. Finally, the functionN∗ is similar in purpose to
the propositionalN , and makes the semantics for negation non-truth functional,
which we need in da Costa systems.

For variables x1, . . . , xn of appropriate arity n in the formula F , the vector x
is the function that maps all free variables in F to some objects. We denote the
denotational interpretation of F with x by |x;F |, which is a tuple in Sn. For the
formulas with different arity for free variables, we simply adjust the arity of the
function x for each of its occurrence. The complement of |x;F | will be denoted
by |x;F |c. By a slight abuse of the notation, |x;N∗| will denote set of denota-
tions of the formulas returned by N∗. Therefore, |x;N∗| :=

⋃
F∈N∗ |x;F |.

The variable assignment is denoted by v. The function v assigns objects of
the model to the variables present in a logical term, and this construction is a
familiar one from first-order logic matching individual atoms with objects in the
model. For a formula F , by a slight abuse of notation, v(F ) will denote the
objects assigned to the variables of F . Moreover, we also define terms following
the standard construction in first-order logic.

As we have remarked earlier, da Costa negation, in both propositional and
first-order cases, is not truth functional. Note that there are, however, some
paraconsistent logics with topological semantics where negation behaves truth
functionally (Goodman, 1981). In such systems, the extension of each and every
propositional variable is associated with a closed set while this condition is not a
requirement in the topological semantics for classical modal logics. The reason
for this is that in classical modal logics, only modal formulas are forced to have
open or closed extensions. Propositional formulas do not necessarily have such
extensions in classical case. Then, the negation in paraconsistent logics with
topological semantics is defined as the closure of the complement (Goodman,
1981). The reason for this is quite immediate. While attempting to take the
negation of a given formula, the usual way is to consider the set theoretical
complement of the extension of the given formula. However, the complement
of a closed set (which is the extension of the given formula) may not be closed,
thus, may not be in the topology since the topology in question is a closed set
topology. Therefore, in order to maintain the closed set topological structure,
negation needs to be defined in that way to produce a closed set.

This idea, however, does not work in da Costa logics. For instance, assume
that we endorse the aforementioned definition of negation for TC∗

ω. Namely,
consider the following definition for the denotational interpretation of the negated
formula ¬F with respect to variables x: |x;¬F | = Clo(Sn − |x;F |).
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A closer inspection immediately reveals that the above semantics for nega-
tion is indeed truth functional. In order to see the failure of this definition
within the context of TC∗

ω, consider the logically equivalent formulas ¬p and
¬(p ∧ p). Based on the proposed semantics, the denotations of ¬p and ¬(p ∧ p)
are necessarily the same. However, in da Costa systems, recall that the ex-
tensions of both ¬p and ¬(p ∧ p) are not necessarily identical. Therefore, the
proposed (standard) topological semantics for paraconsistency does not work
for da Costa systems.

Here, we suggest a working topological semantics for C∗

ω.

• |x; c| ∈ S for a constant c,

• |x;F | ⊆ Sn for a n-place predicate F ,

In particular, take an atomic sentence F (t1, . . . , tn) with terms ti for 1 ≤
i ≤ n. If d1, . . . , dn are the evaluation of the terms t1, . . . , tn under the
variable assignment v, then we have the following in S:

|t;F (t1, . . . , tn)| = v(F )(v(t1), . . . v(tn)),

• |x;F ∧G| = |x;F | ∩ |x;G|,

• |x;F ∨G| = |x;F | ∪ |x;G|,

• |x;¬F | = |x;N∗| ∪ Clo(|x;F |c),

• |x; ∃yF | =
⋃

d∈D |d, d;F | where d ∈ Dn,

• |x; ∀yF | =
⋂

d∈D |d, d;F | where d ∈ Dn.

We can furthermore define the truth in a TC∗

ω model M . We say that a
formula F (x) is true in the denotational interpretation | · |, if |x;F | = S.

Let us now explicate the given semantics a bit further. The denotational
semantics for the negation ensures that the negated denotation is among the
formulas determined by N∗ function. So, |x;N∗| can be thought of as the col-
lection of the denotations of the formulas returned by N∗. The closure operator
Clo in the definition functions as the classical (or standard) part of the seman-
tics. Similarly, the denotational semantics for the quantifier varies over the
objects in the domain even though the denotation of the formula in question
will eventually be in S.

As an illustration, let us consider the denotational semantics of the formula
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∃y(¬F ∧ F ) with a variable x.

|x; ∃y(¬F ∧ F )| =
⋃

d∈D

|d, d′; (¬F ∧ F )|

=
⋃

d∈D

{|d, d′;¬F | ∩ |d, d′;F |}

=
⋃

d∈D

{(|d, d′;N∗| ∪ Clo(|d, d′;F |c)) ∩ |d, d′;F |}

=
⋃

d∈D

{(|d, d′;N∗| ∩ |d, d′;F |) ∪ ∂(|d, d′;F |)}

where ∂(·) is the topological boundary operator. In this example, the individuals
d ∈ D which exist and satisfy the contradictory formula F ∧ ¬F lie in the
boundary of the denotation of F , or in the intersection of the denotation of F
and the denotation of the formulas returned by N∗.

Also, it is worth noting that quantified De Morgan’s laws are not valid in
da Costa systems - even if the set theoretical De Morgan’s laws hold (da Costa
et al., 2007). As an illustration, we consider the following classical first-order
logical equality ∀xFx↔ ¬∃x¬Fx. Let us first see the denotation of ¬∃x¬Fx.

|x;¬∃x¬Fx| = |d;N∗| ∪ Clo(|d; ∃x¬Fx|c)

= |d;N∗| ∪ Clo((∪d∈D|d;¬F |)c)

= |d;N∗| ∪ Clo((∪d∈D(|d;N∗| ∪ Clo(|d;F |)c))c)

Therefore, if |d;N∗| is not empty, we cannot generally obtain
⋂

d∈D |d;F |,
which is the denotation of ∀xFx. Other quantified De Morgan laws can be
given similar arguments (Ferguson, 2012).

Soundness of the axioms of TC∗

ω with respect to the given semantics above is
a straightforward symbolic manipulation. However, we will still consider some
of the axioms which are unique to da Costa systems, and show their soundness.

Now, as the first case, we take the following formula as an instantiation of
the axiom scheme (3) with n = 1.

∀xF 1x→ (∀xFx)1

In order to have an idea of what to expect, let us first note the following
logical equalities.

∀xF 1x = ∀xF ◦x = ∀x¬(Fx ∧ ¬Fx)

and
(∀xFx)1 = (∀xFx)◦ = ¬(∀xFx ∧ ¬∀xFx).

So let us now assume, ∀xF 1x, which is equivalent to ∀x.¬(Fx∧¬Fx). Then,
we have the following.
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|x; ∀x.F 1x| = |x; ∀x.¬(Fx ∧ ¬Fx)|

=
⋂

d∈D

|d;¬(Fx ∧ ¬Fx)|

=
⋂

d∈D

{|d;N∗| ∪ Clo(|d;Fx ∧ ¬Fx|c)}

=
⋂

d∈D

{|d;N∗| ∪ Clo((|d;Fx| ∩ |d;¬Fx|)c)}

=
⋂

d∈D

{|d;N∗| ∪ Clo((|d;Fx| ∩ (|d;N∗| ∪ Clo(|d;Fx|c)))c)}

=
⋂

d∈D

{|d;N∗| ∪ Clo((|d;Fx| ∩ |d;N∗|) ∪ (|d;Fx| ∩ Clo(|d;Fx|c)))c)}

(as intersection operation commutes with closure operator)

=
⋂

d∈D

|d;N∗| ∪ ∩d∈DClo(|d;Fx| ∩ |d;N∗|)c ∪ (|d;Fx| ∩ Clo(|d;Fx|c))c))

=
⋂

d∈D

|d;N∗| ∪ Clo(∩d∈D|d;Fx| ∩ |d;N∗|)c ∪ ∩d∈D(|d;Fx| ∩ Clo(|d;Fx|c))c))

(as the interior of a set is its subset)

⊆ |d;N∗| ∪ Clo(∩d∈D|d;Fx|)c ∪ (∩d∈D(|d;Fx| ∩ Clo(|d;Fx|c))c))

⊆ |d;N∗| ∪ Clo(∩d∈D|d;Fx|)c ∪ ((|d;Fx| ∩ Clo ∩d∈D (|d;Fx|c))c))

⊆ |d;N∗| ∪ Clo(∩d∈D|d;Fx| ∩ ((|d;Fx| ∩ Clo ∩d∈D (|d;Fx|c)))

⊆ ¬(∀xFx ∧ ¬∀xFx)

⊆ (∀xFx)1

Thus, we obtain ∀xF 1x→ (∀xFx)1.
As the second case, let us take the axiom scheme (4) instantiated with n = 1.

Thus, we consider the following implication.

∀xF 1x→ (∃xFx)1

Now, below is what follows from the above statement.
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|x; ∀x.F 1x| = |x; ∀x.¬(Fx ∧ ¬Fx)|

=
⋂

d∈D

{|d;N∗| ∪ Clo(|d;Fx ∧ ¬Fx|c)}

=
⋂

d∈D

{|d;N∗| ∪ Clo(|d;Fx| ∩ |d;¬Fx|)c}

=
⋂

d∈D

{|d;N∗| ∪ Clo(|d;Fx|c ∪ |d;¬Fx|c)}

=
⋂

d∈D

{|d;N∗| ∪ Clo(|d;Fx|c ∪ (|d;N∗| ∪ Clo(|d;Fx|c))c))}

=
⋂

d∈D

{|d;N∗| ∪ Clo(|d;Fx|c ∪ (|d;N∗|c ∩ Int(|d;Fx|)))}

⊆
⋂

d∈D

|d;N∗| ∪ Clo(∩d∈D|d;Fx|c ∪ (∩d∈D|d;N∗|c ∩ Int(∩d∈D|d;Fx|)))

⊆ |d;N∗| ∪ Clo(∩d∈D|d;Fx|c ∪ (|d;N∗|c ∩ Int(∪d∈D|d;F |)))

by set theoretical De Morgan’s Laws

⊆ |d;N∗| ∪ Clo(∪d∈D|d;Fx| ∩ (|d;N∗| ∪ Clo(∪d∈D|d;F |c)c))

⊆ |d;N∗| ∪ Clo((∃xFx ∧ ¬∃xFx)c)

⊆ ¬(∃xFx ∧ ¬∃xFx)

⊆ (∃xFx)1

Finally, we obtain ∀xF 1x→ (∃xFx)1.
The remaining axioms can also be given rather straightforward arguments

for their soundness, thus we leave them to the reader.
This was soundness. However, we still do not have a completeness result (or

lack thereof) for TC∗

ω. We leave it for further work.
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