Generalization of Gabidulin Codes over Fields of Rational Functions

Abstract : We transpose the theory of rank metric and Gabidulin codes to the case of fields which are not finite fields. The Frobenius automorphism is replaced by any element of the Galois group of a cyclic algebraic extension of a base field. We use our framework to define Gabidulin codes over the field of rational functions using algebraic function fields with a cyclic Galois group. This gives a linear subspace of matrices whose coefficients are rational function, such that the rank of each of this matrix is lower bounded, where the rank is comprised in term of linear combination with rational functions. We provide two examples based on Kummer and Artin-Schreier extensions.The matrices that we obtain may be interpreted as generating matrices of convolutional codes.
Type de document :
Communication dans un congrès
21st International Symposium on Mathematical Theory of Networks and Systems (MTNS 2014), Jul 2014, Groningen, Netherlands. 〈https://fwn06.housing.rug.nl/mtns2014/〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01094843
Contributeur : Daniel Augot <>
Soumis le : samedi 13 décembre 2014 - 17:43:04
Dernière modification le : mercredi 25 avril 2018 - 10:45:21
Document(s) archivé(s) le : samedi 14 mars 2015 - 10:21:53

Fichiers

paper-revised.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01094843, version 1
  • ARXIV : 1412.6080

Collections

Citation

Daniel Augot. Generalization of Gabidulin Codes over Fields of Rational Functions. 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS 2014), Jul 2014, Groningen, Netherlands. 〈https://fwn06.housing.rug.nl/mtns2014/〉. 〈hal-01094843〉

Partager

Métriques

Consultations de la notice

347

Téléchargements de fichiers

118