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Abstract—Optimizing connected component labeling is cur-
rently a very active research field. Some teams claim to have
design the fastest algorithm ever designed. This paper presents
a review of these algorithms and a enhanced benchmark that
improve classical random images benchmark with a varying
granularity set of random images in order to become closer to
natural image behavior.

INTRODUCTION

Binary Connected Component Labeling (CCL) algorithms
deal with graph coloring and transitive closure computation.
CCL algorithms play a central part in machine vision, because
they often constitute a mandatory step between low-level
image processing (filtering) and high-level image processing
(recognition, decision). As such, CCL algorithms have a
lot of applications and derivate algorithms like convex hull
computation, hysteresis filtering or geodesic reconstruction.

Designing a new algorithm is challenging both from con-
sidering the overwhelming literature and from the very perfor-
mance of best existing algorithms. Goals could be a faster al-
gorithm on some class of computer architecture or minimizing
the number of over-created labels or the smallest theoretical
complexity. Yet another issue is to be most predictable.

Now, from the current state of the computing technology,
reaching decent performances in actuality requires for CCL
algorithms to take into account two specificities/capacities
of current General Purpose Processors (GPP): the processor
pipeline and its cache memories. That amounts to minimize
conditional statements (like tests and comparisons) to reduce
the number of pipeline stalls and limit random sparse
(typically vertical) memory accesses, to lower cache misses.

As it is an intermediate level algorithm, it processes the out-
put data coming from low level algorithms (binary segmenta-
tion, ...) and provides abstract input data to other intermediate
or high level (decision) algorithms. Usually, such abstract data
also called features are the boundary of bounding rectangle
(for target tracking) and the first order statistical moments
(surface, centroid, orientation, ...). So if a standalone CCL
algorithm can be considered at first step, the couple “CCL +
features computation” is the procedure to be actually evaluated
at end.

Our contribution consists of three elements:

« an enhanced benchmark that incorporates random images
with different granularities (fig. 1). That can be seen as

a bridge between classical random images of density and
data base images,

e a benchmark with all state-of-the-art algorithms, as pre-
vious articles or reviews on CCL forget some algorithms,

e an analysis of the duration of each stage (labeling,
transitive closure, relabeling) that helps to understand the
global performance of each algorithm and especially the
feature computation part that is usually not addressed by
other articles.

This paper is organized as follows: the first section describes
the modern algorithms that claim to be the world fastest,
the second section presents the benchmarks, the third section
provide an analysis of algorithm’s performances at an overall
scale, the fourth section provide an in-depth algorithm’s step
duration analysis.

I. CONNECTED COMPONENT LABELING ALGORITHMS

Historical algorithms were designed by pioneers like Rosen-
feld [14], Haralick [4] and Lumia [10] who designed pixel-
based algorithms, and Ronse [13] for run-based algorithm.
Modern algorithms derive from the historical ones and try
to make improvements by replacing some components by a
more efficient one. An extensive bibliography can be found
in [5] and [16]. Except Contour Tracing algorithms [1] that
is aesthetic but inefficient, all modern algorithms are two-
passes (or less) algorithms, none is a data-dependent multi-
pass algorithm. They share the same three steps:

o first labeling, that assigns a temporary/provisional label
to each pixel and builds labels equivalence,

« label equivalences solving, that is to compute the transi-
tive closure of the graph associated to the label equiva-
lence table,

« final labeling, to replace temporary label by the final label
(usually the smallest one of the component).
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Fig. 1. random images with density = 35% at granularity g € 1,2,8



They differ on three points: the mask topology, the number
of tests for a given mask to find out the label and the
equivalence management algorithm.

Fig. 2. minimal 8-connected basic patterns generating temporary labels: stair
(left) and concavity (right)

Using Rosen feld mask (fig. 3), only two basic patterns
trigger label creation (fig. 2), whatever the connectivity (here
8-connectivity). The first one is the stair. It is responsible
for the unnecessary provisional label created by pixel-based
algorithms like Rosenfeld’s one. The second one is the
concavity. From the neighborhood that founds CCL, it is
obvious that the label creation can not be avoided.

As figure 5 and figure 6 show, the execution time is not
directly correlated to the total amount of final labels, but to
the number of stairs and concavities that generates equivalence
building, so one way to improve CCL algorithms is to widen
the label mask. That leads to block-based algorithms (fig. 3)
like HCS, [7] and Grana [3] that respectively compute 2
and 4 labels from 6-pixel and 16-pixel neighborhood. One
the opposite way, RCM [8] introduces a mask with only 3
neighbors in order to reduce the amount of tests. Grana mask
can detect some concavities and avoid label creation if these
concavities are small enough to entirely fit in the mask. But the
only way to prevent label creation from stairs is to use a run-
based algorithm like HCS [6] or Light-Speed Labeling (LSL)
[9] that first detect the pixel adjacency in the neighborhood
before to assign a label to the run. The LSL uses a tricky
line-relative labeling to generate RLC coding to directly find
adjacent runs on the previous line whereas HCS has to perform
a test on every pixel to decide to continue to propagate a label
or to perform an equivalence.

The second point to enhance algorithm efficiency is to
reduce the number of tests. A decision tree (DT) [16] reduces
the amount of labels to test to find out the value to assign
to the current label based on mask topology. For pixel-based
algorithms, it decreases the complexity of the 8-connectivity
to the 4-connectivity one. For block-based algorithm, DT is
mandatory. Another way to reduce complexity is to perform
path-compression (PC) [2]. It is a step added to the Union-
Find algorithm to perform a transitive closure in climbing up
to the root of the equivalence. It has been proven that PC
make the Union-Find complexity to grow with the inverse of
Ackermann function [15].

Finally the third point is the equivalence management algo-
rithm. Rosenfeld algorithm uses Union-Find algorithm and
the associated table to store the equivalences. An alternative
approach with three tables has been proposed by [5] now
referenced as Suzuki equivalence tables. R holds the root of
each set of components, 7" the fail of each equivalence and N
the next-equivalent label. As table R holds the root of each

label, the transitive closure of the equivalence table is not done
at the end, but on the fly, at each equivalence.
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Fig. 3. masks: first line: Rosenfeld, RCM, HCSy and Grana, second
line: HC'S and LSL

The configurations of the 8-connected algorithms that are
benchmarked are :

e Rosenfeld: original algorithm improved with DT+PC,

o Suzuki: Rosenfeld mask with Suzuki tables manage-
ment that we improved with DT,

e RCM: pixel-based algorithm with Suzuki management,

e« HC(CS5: block-based algorithm with Suzuki management,

e Grana: block-based algorithm with 128-stage decision
tree,

e HCS: run-based algorithm with Suzuki management,

e LSL: run-based algorithm with Union-Find management
with two variants: LSLgrp and LSLgE.
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Fig. 4. 8-connected Decision Tree

II. BENCHMARKS

We present here, the images and processors used for bench-
marking. We also provide a qualitative analysis of temporary
labels creation.

Usually papers evaluate CCL performance first with random
images (varying pixel density from 0% to 100%) for hard-
to-label benchmark and secondly with image data base. But
data base can be biased and then may favor some algorithms.
As we want our benchmark to be as fair as possible (quite
difficult with data-dependent algorithms) we decided to select
Mersenne Twister MT19937 [11] to control random number
generation and to extend random images by changing the pixel
granularity. Initial random image has a granularity of 1. Then
we create g-random images whose block of pixels have a size
of g x g (Fig. 1), with g € [1 : 16].

The figure 5 provide the temporary labels distribution for
granularity g € {1,4} for pixel-based, run-based and Grana
algorithms (red, magenta and blue). The number of final labels
(green), concavities (cyan) and stairs (orange) is also provided.



First, if we compare run-based and pixel-based label distri-
bution, we can see that run-based curve has always the same
behavior (close to the final label curve), contrary to the pixel-
based curve. The reason is that the amount of concavities
is proportionally constant (from one granularity to another
one) to the number of final label. For g > 2, it appears that
the amount of stairs becomes bigger than concavities, then
the pixel-based also proportionally generates more temporary
labels than for ¢ = 1. That is the reason why run-based
algorithms have a better execution time when g is growing:
they avoid more and more label creation.

Concerning Grana algorithm, it generates quite the same
number of temporary labels for g = 1 than pixel-based ones.
For g = 2 it comes closer to run-based algorithms as its wide
mask avoids many temporary labels. But for g > 4, its wide
mask does not avoid label creation, as 4-pixel wide stairs and
concavities are beyond the pixel’s neighborhood.
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Fig. 5. Distribution of labels, concavities and stairs vs for g € {1,2,4}

The Standard Image Data-Base (SIDBA) has been used
for natural image labeling. Gray-scaled images have been
automatically binarized with Otsu algorithm [12]. For both
random images and natural ones, we provide the cpp (cycle per
pixel) of each algorithm, with or without features computation
(FC). The features extracted for each component are: the
bounding box ([Zmin,Tmaz] X [Ymin, Ymaz]) and the first
statistical moments (S, S, and S,). The benchmarks (except

fig.8) were done on a Sandy-Bridge 17-2400 running a Debian
7.5 /64-bit linux and with ICC 14.0.1.

III. RESULTS AND ANALYSIS
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Fig. 6. cpp for granularity g € {1,4} and average cpp vs granularity

a) Density behavior:

Figure 6 shows us that algorithm curves, except HC'Ss,
are symmetrical about their maximum value. The abscissas
of the maximum values are contained in the [45%;55%]
area depending on algorithm. Concavities and stairs are an
explanation (fig. 5), they lead to temporary label creation and
labels merging, they also increase the probability of more
tests in the decision tree (e.g., stair imposes to traverse all
the DT graph until the label creation node “+1” (fig. 4)) and
doing so increase cpp. As described in [6], HC'S, algorithm
make no usage of decision tree and so, it needs to load the
neighborhood’s labels for each pixel to label. Doing so, it is
not able to reduce cpp when density grows above 50%.

One can observe that when the number of stairs and
concavities decrease (g comes higher) the density curves tend
to flatten.

b) Granularity influence: Table I and figure 6 describe
the behavior of algorithms with different granularity images.



TABLE I
AVERAGE cpp ACCORDING TO GRANULARITY WITH/WITHOUT FC

granularity
g=1[]g=2[g=4[g=8]g=16
algorithms Without FC
Rosenfeld | 17.65 10.83 7.81 6.91 6.52
Suzuki 17.04 | 10.47 7.68 6.76 6.44
RCM 17.93 | 13.05 | 10.66 9.41 8.81
HCS 1842 | 12.38 9.28 7.84 7.09
HCS> 15.88 | 10.19 8.66 7.99 7.70
Grana 20.10 10.54 7.60 6.23 5.64
LSLstp 12.55 8.68 7.38 6.87 6.65
LSLRrLE 22.21 12.37 7.36 4.94 3.68
algorithms With FC
Rosenfeld | 31.84 | 21.99 | 1745 | 15.62 14.68
Suzuki 31.14 | 21.63 | 17.21 15.35 14.49
RCM 32.00 | 24.06 | 20.03 | 17.87 16.84
HCS 31.91 | 2290 | 18.36 16.05 14.96
HCS, 30.10 | 21.66 | 1877 | 17.28 16.51
Grana 34.34 | 22.00 | 17.76 | 15.55 14.46
LSLstp 13.28 8.10 6.13 5.33 4.96
LSLRrLE 16.77 8.34 4.95 3.52 2.73

The main trend is that when g grows cpp drops. First quickly
[x0.53; x0.73] for g € [1:2], and then slowly [x0.30; x0.77]
for g € [2:16]. One can notice that LSLpy g is the most
accelerated when granularity grows while LSLgrp is the
most regular. It comes from their construction as explained in
[9]. LSLgE is obviously inefficient for g = 1 because of its
run-length encoding kernel. RC'M performs better on g = 1
than other granularities, this is due to the smaller number of
tests it performs compared to Rosen feld which is an efficient
strategy for unstructured data.

LSL algorithms are the most efficient: LSLgrp is the
fastest for g € [1 : 3] and LSLgLE is the fastest for g €
[4 : 16] followed by Grana, Suzuki, LSLgrp, Rosenfeld,
HCS, HCS; and RCM.

c) Features influence: When FC is activated, LSLgs7Tp
and LSLipE outperform all others algorithms (table I and
fig. 7). This is mostly due to the efficiency of run-length FC
that saves comparisons and memory accesses — compared to
pixel algorithms [9]. Moreover for LSL algorithms, features
are computed on-the-fly and before relabeling instead of after
relabeling for pixel-based algorithms, the relabeling pass is
unnecessary for LS L. The ranking is LSLgr;p and LSLsrp,
Suzuki, Grana, Rosenfeld, HC'S, HCS and RCM.

FC increases every other algorithms cpp depending on g
(even if the number of pixels is constant for a given density)
from +7.8cpp up to +14.2cpp. Those variations are explained
by the structure of the image (fig. 5): if granularity is low there
is more labels than if granularity is high, so more sparse and
distant memory accesses will happen, that lead to different
values of cache hits or cache misses.

Table II provides relative cpp ratios between the fastest
algorithm and the other ones for different g values. The ratio
increases with g. When FC is activated (considering structured
images), LSLrpp is x3.48 faster than Suzuki for g = 4.
This ratio increases to x5.30 for g = 16.
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Fig. 7.  cpp over density for granularity g € {1,4} and average cpp over
granularity with FC

TABLE II
cpp RATIO BETWEEN THE FASTEST ALGORITHM AND THE OTHER ONES
granularity
g=1[g=2[g=4]9g=8]g=16

algorithms without FC
Rosen feld 1.41 1.25 1.06 1.40 1.77
Suzuki 1.36 1.21 1.04 1.37 1.75
RCM 1.43 1.50 1.45 1.90 2.39
HCS 1.47 1.43 1.26 1.59 1.92
HCS> 1.26 1.17 1.18 1.62 2.09
Grana 1.60 1.21 1.03 1.26 1.53
LSLsTp 1.00 1.00 1.00 1.39 1.81
LSLRrLE 1.77 1.42 1.00 1.00 1.00

algorithms with FC

Rosen feld 2.40 2.71 3.53 4.44 5.38
Suzuki 2.34 2.67 3.48 4.36 5.31
RCM 2.41 2.97 4.05 5.08 6.17
HCS 2.40 2.83 3.71 4.56 548
HCS> 2.27 2.67 3.79 4.91 6.05
Grana 2.58 2.72 3.59 4.42 5.30
LSLstp 1.00 1.00 1.24 1.51 1.82
LSLRrLE 1.26 1.03 1.00 1.00 1.00




d) Real case images: SIDBA natural images database
benchmark confirm random images conclusion.

We give the results for each algorithm (table III) with
min, average and max values for processing time and cpp,
for direct comparison with others articles results. With FC,
LSLgrpE is first followed by LSLgrp, Grana, Suzuki,
HCS, Rosenfeld, RCM and HCS>. One can notice that
LSLgrp is extremely stable in execution time on all images:
the variation is 0.12 ms (and 0.21 ms with FC).

TABLE III
EXECUTION TIME AND cpp ON SIDBA WITH/WITHOUT FC
time (ms) cpp
min [ avg [ max min | avg | max
algorithms Without FC
Rosenfeld | 0.93 1.08 1.20 6.62 7.64 8.51
Suzuki 0.90 | 1.04 1.16 6.36 7.35 8.18
RCM 1.02 | 1.19 | 1.34 7.21 8.43 9.52
HCS 0.87 | 1.06 1.24 6.15 7.48 8.79
HCS, 1.08 | 1.23 1.43 7.63 8.75 10.15
Grana 0.82 | 1.01 1.23 5.81 7.18 8.68
LSLsTp 093 | 0.98 | 1.05 6.58 6.96 7.45
LSLRrLE 0.36 | 0.67 | 1.02 2.55 4.72 7.24
algorithms With FC
Rosenfeld | 1.85 | 2.12 | 2.44 13.10 | 14.98 | 17.28
Suzuki 1.81 | 2.07 | 2.37 12.85 | 14.67 | 16.76
RCM 1.96 | 2.24 | 2.53 13.91 | 15.86 | 17.95
HCS 1.78 | 2.09 | 2.37 12.61 | 14.81 | 16.77
HCSy 1.93 | 227 | 2.70 13.68 | 16.09 | 19.16
Grana 1.75 | 207 | 2.37 1242 | 14.67 | 16.78
LSLsTp 0.65 | 0.76 | 0.86 4.63 537 6.11
LSLRrLE 0.26 | 0.45 | 0.66 1.85 3.17 4.69

e) Architecture influence - From Conroe to Haswell:
Figure 8 presents the performance of the algorithms (cpp) on
six Intel processors for SIDBA data base. The turning point
was the Nehalem with the abandon of the FSB bus and its
replacement by more efficient busses (DMI on core-i7 and
QPI on Xeon). If cpp is quite constant, new processors are
faster thanks to a higher clock frequency. From an algorithmic
point of view, results are very similar on all processors. The
algorithms can be split into three groups of performance:
first {LSLsrp, LSLrrr} then {Rosen feld, Suzuki, HCS,
Grana} and finally {RCM, HCS,}.
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Fig. 8. Average cpp for six Intel processors for SIDBA with FC

IV. IN-DEPHT ALGORITHM TIME SLICING ANALYSIS

a) Random Images: In order to well understand the
time distribution between each steps of CCL algorithm, we
monitored them (fig. 9 & fig. 10). One can see that labeling
and features computations parts are very similar for all pixel-
based algorithms, and have quite the same duration that is by
far longer that the relabeling part.

The LSLgrp version has a quite constant relabeling part
like pixel-based versions, as it is done one pixel by one pixel
(data independent).

The FC part is by far smaller for both LSL thanks to run-
length coding. First min and max operations are done only
twice, for the beginning and the end of a run, instead of
as many times as there are pixels in the run. Secondly, the
statistical moment can be calculated with the begin and the
end indexes. For a given run of interval [jo, j1], S = j1—jo+1
and S; = ¢(j1) — ¢(Jo + 1), Sy =i x S, with ¢ the first
Bernoulli polynomial.

For LSLRrE, the relabeling is not constant and can be
more time consuming than pixel-based relabeling because of
the run-lenght encoding needs to decompress the information
and so performs more memory accesses.

As all the information is in the equivalence table and in
the features structures, the relabeling is not required for LSL
and so it is not taken into account for the calculus of the
algorithm duration in tables and figures of the section III and
for figures 12 and 11. The same modification can be done for
pixel algorithms, but, as far as we known, the other authors
have never mentioned this modification as they do not address
FC optimization in their articles and only focus on labeling
part.
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When g grows, the labeling and relabeling parts of LS Lsrp
are very similar to pixel-based algorithms while as there
are fewer regions, these parts for LSLgrrr become faster.
For pixel-based algorithms, as the duration of these parts
decreases, FC becomes the main part of the total computation
time, whereas for LS L versions FC is so fast that it is almost
invisible on the graph. For that reason, when FC is taken into
account (in a real application), no pixel-based algorithm can
match run-length-based algorithm performance like LS LrrE.

Algorithms time-slicing for g = 1
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b) Real case images: Pie-graphs show the time reparti-
tion for SIDBA images (full pie for the slowest algorithm). The
average SIDBA cpp compared to random images of granularity
is in the interval [4 — 8] for pixel algorithm and [8 — 16]
for LSL versions. So random images with a granularity of 1
are not representative of real use cases, they are just useful
to find the synthetic/theoretical worst case. But for a practical
case, random images with g > 4 are more suitable. As for
random images with high granularity, FC is invisible for LSL
algorithms, whereas it can be half of the whole processing
time for pixel algorithms (RCM, HC'S3).

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a new detailed benchmark proce-
dure for evaluating connected component labeling algorithms,
with granularity steps that are complemented with the use of
a standard database. This benchmark procedure, applied to a
selection of State-of-the-Art algorithms, confirms that LSL
algorithms are still the world’s fastest CCL algorithms.

As we focus on real utilization of CCL - that implies to
extract some features — we performed an in-depth analysis of
the labeling parts duration to explain why run-length based
algorithms outperform pixel-based ones. The experimentation
shows that all pixel-based algorithms have a very similar
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Fig. 12.  Average processing time p on SIDBA images with FC, slower is

the reference

behavior (labeling, transitive closure and relabeling parts) both
on random images and images from data-bases. Moreover, the
features computation is a significant time-consuming part for
pixel-based algorithms whereas for LS L, features computation
is very fast and efficient (for image granularity > 4) thanks to
run-length encoding. Future work will consider the paralleliza-
tion of these algorithms as modern processors are multicore.
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