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Abstract—We start from a general-purpose many-core archi-
tecture designed for average-case performance and ease of use.
In particular, its distributed shared memory programming model
allows the use of a code generation flow based on the (unmodified)
gcc compiler chain. We modify this architecture and extend the
code generation flow to allow the construction of efficient hard
real-time systems starting from dependent task specifications.
We rely on a static (off-line) real-time scheduling paradigm well-
adapted to embedded control and signal processing applications
with regular control structure.

We modify the architecture (and in particular the on-chip
network) to allow the implementation of static schedules with
very high (clock cycle) temporal precision. On the software side,
we define application mapping rules ensuring that the timing
precision provided by the hardware is not lost. These mapping
rules include requirements on the allocation of data variables
to specific RAM banks and on the use of locks to ensure
the absence of contentions during access to shared resources.
Applications complying with these rules can be written manually
or automatically obtained using a new mapping tool that takes
all the allocation and scheduling decisions. Compilation of the
resulting C code is still done using the (unmodified) gcc compiler
chain. The resulting platform provides good performance, and at
the same provides very high timing precision, as shown by two
case studies (an embedded controller and an implementation of
the FFT).

We conclude our paper with a presentation of some ongoing
work on the subject: A case study (an implementation of the
H.264 decoder) meant to test the limitations of our method.

I. INTRODUCTION

The number of transistors in micro-processor chips upholds

today its historic trend of exponential growth, known as

Moore’s law [1]. Until the years 2000, this growth mostly

translated into micro-architectural changes aimed at improving

mono-processor performance. However, performance increase

by micro-architectural advances alone follows the (empirical)

Pollack’s rule [2] which states that the performance increase

is roughly proportional to the square root of the increase in

complexity. As the last decade brought the end of the fast

operating frequency increases [3], mono-processors were no

longer able to cover the performance needs of increasingly

complex applications.

This led to an industry-wide shift towards parallel com-

puting. While parallel architectures already existed, mainly

in the high-performance and embedded computing fields,

parallelism now entered the mainstream of general-purpose

computing under the form of multi-core, and then many-core

architectures. We are focusing in this paper on tiled many-core

architectures characterized by:

• Large numbers of simpler processing cores, ranging from

a few tens to a few hundreds in production architectures.

The cores are divided among a set of identical computing

tiles.

• Tiles are linked together through one or more networks-

on-chip (NoCs) with regular structure (e.g. mesh, torus).

Such NoCs provide better performance/scalability trade-

offs than classical buses and crossbars.

• Novel memory architectures that can deliver higher band-

width access through the use of multiple memory banks

localized near the processors (in the computing tiles).

Data localization often requires that the memory hier-

archy is exposed, at least in part, to the programmer.

Tiled many-cores are commercially proposed today for

general-purpose, high-performance, and embedded/real-time

applications [4], [5], [6]. However, the use of such architec-

tures in a real-time context not only depends on the perfor-

mance, predictability and cost of the hardware, but also on the

availability of development tools such as compilers, scheduling

and schedulability analysis tools, WCET analysis tools, etc.

a) Contribution: To reconcile performance and pre-

dictability, all the hardware, software, and mapping aspects of

our design flow are considered in a unified way and optimized

to fit a single real-time scheduling paradigm: table-based off-

line real-time scheduling. This paradigm is well adapted to our

target application class: periodic embedded control and signal

processing applications specified using data-flow synchronous

languages like those used in safety-critical embedded systems

design.

On the hardware side, the extensions presented in Section III

allow the efficient implementation of global scheduling ta-

bles covering both CPUs and NoC resources. Computations

and communications can be tightly synchronized, and NoC

resources can be statically allocated with the same precision

and flexibility as CPU time (as specified with communication

programs).

The global scheduling tables are the result of a compilation

process that follows a global optimization approach to define

the allocation and scheduling of all computations and commu-

nications. To ensure that the timing precision provided by the

hardware is well exploited by the software, we require that the

allocation, the scheduling, and the software code generation
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follow a set of rules meant to ensure the absence of contentions

during access to shared resources.

Furthermore, we achieve this with limited modifications of

a general-purpose many-core platform. This allows existing

tools for optimized code generation (the gcc compiler) and

for timing analysis to be used unmodified, and thus reduces

the overall cost of the approach.

We have presented in previous publications details of

our approach, namely the NoC architecture allowing static

scheduling of communication [7] and the global off-line

scheduling algorithm [8]. In this paper, we emphasize the

importance of a global approach where (limited) modifications

are made at all levels of the development environment, in

both hardware and software, and for both scheduling and code

generation.

b) Outline.: The remainder of the paper is organized as

follows: Section II reviews related work. Section III presents

the original many-core platform and the modifications we

brought in both the NoC and the computing tiles. Section IV

defines the rules we impose on code generation to ensure

performance and predictability. Section VI presents ongoing

work on the H.264 case study, Section V presents some

experimental results, and Section VII concludes.

II. RELATED WORK

Our work had 3 main sources of inspiration. Previous work

on off-line real-time scheduling [9], [10] has shown that table-

based techniques allow an efficient allocation of resources in

multi-processor architectures, especially if classical optimiza-

tion techniques such as software pipelining are used [11]. The

main difference with respect to this work is that we take

into account architectural aspects that are specific to many-

cores, such as the NoC-based communication system based

on wormhole routing and with limited buffering capabilities.

Our second source of inspiration is previous work on

the RAW many-core architecture [12] and on the StreamIt

mapping tool for RAW [13]. The RAW architecture was the

first to employ communication programs to control on-chip

communications. There are several fundamental differences

between this work and the work presented in this paper: The

objective of RAW is to allow the many-core-wide use of

compilation techniques that exploit Instruction Level Paral-

lelism [14] and a very fine grain scheduling of computations

and communications. We aim for a coarser level of control

in both the NoC (transmission of packets instead of RAW’s

scalar values), and the software control of the NoC (which is

performed through standard components such as caches and

DMA units). Our approach allows the use of a classical shared

memory programming model, general-purpose development

tools, and existing applications. The StreamIt compiler uses

scheduling tables as an internal compiler representation, but

does not aim for real-time implementation. This is why it does

not take into account timing interferences due to the mapping

itself (which we do).

Our third major source of inspiration was previous work

on the design of general-purpose many-core architectures

using the SoCLib virtual prototyping library [15] and the

DSPIN NoC [16]. Our work extends this NoC to provide good

support to off-line real-time scheduling. Our changes retain the

general-purpose character of the architecture by preserving its

simple programming model and the ability to use general-

purpose development tools.

Besides these 3 direct inspiration sources, our work is

closely related to previous results from several fields. The idea

of organizing a development environment and flow around a

scheduling paradigm is not new. We already saw that static

table-based scheduling was the basis of the RAW/StreamIt

approach. We know of two other attempts. The first one is

the CompSoC platform [17], which relies on a compositional

scheduling and timing analysis approach where applications

are assigned latency and throughput budgets on the computa-

tion and communication resources (such an approach can be

generalized towards the use of full-fledged real-time calculus,

like in [18]). The respect of these budgets is enforced using

time division multiplexing (TDM) mechanisms on the various

resources, such as the NoC, but the fine-grain synchronization

between these TDM mechanisms is not required, nor used

during timing analysis (only the latency/throughput budgets

are used). By comparison, our approach allows the tight

synchronization of computation and communication schedules,

which improves timing precision and guaranteed performance,

but requires a more static execution model than CompSoC.

The second approach is based on the use of a priority-

preemptive scheduling paradigm [19]. However, the target

application class is even farther from the one we consider that

the application class of CompSoC. Indeed, the cited paper

considers the case of independent tasks, whereas our main

focus is on dependent task systems.

More generally, our work is also closely related to previous

work on the design of NoCs with support for real-time

and safety-critical applications [20], [21], [22], [23] and on

application mapping onto many-core architectures [24], [25],

[26], [27], [28], the difference being given by the integrated

approach we use and by the statically scheduled NoC com-

munications which ensure high timing precision and efficiency

for the chosen class of applications.

III. HARDWARE PLATFORM

A. Tiled many-cores in SoCLib

The SoCLib virtual prototyping library [15] allows the

definition of tiled many-cores following a distributed shared

memory paradigm where all memory banks and component

programming interfaces are assigned unique addresses in a

global address space. All memory transfers and component

programming operations are represented with memory ac-

cesses organised as command/response transactions according

to the VCI/OCP protocol [29]. To avoid interferences between

commands and responses (which can lead to deadlocks), the

on-chip interconnect is organized in two completely disjoint

sub-networks, one for transmitting commands, and the other

for responses.

There are two types of transactions: read and write. In write

transactions the command sub-network carries the data to be

written and the target address, and the response sub-network
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carries a return code. In read transactions, the command sub-

network carries the address and size of the requested data, and

the response sub-network carries the data.

[1.0] [1.1] [1.2] [1.3]

[2.1]

[0.1]

[2.2]

[0.2]

[2.3]

[0.3][0.0]
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DSPIN

Command
Router

DSPIN

Tile

Router
Response

Fig. 1. General organization of our tiled many-core

As pictured in Fig. 1, the tiled many-cores of SoCLib are

composed of a rectangular set of tiles connected through a

state-of-the-art 2D synchronous mesh network-on-chip (NoC)

called DSPIN [16]. The NoC is formed of a command NoC

and a response NoC which are fully separated. Each tile has

its own local interconnect, linked to the NoC and to the IP

cores of the tile (CPUs, RAMs, DMAs, etc.).

SoCLib currently contains simulation models for a number

of processors cores such as PowerPC 405, Sparc 7, ARM7,

NIOSII and MicroBlaze and can be extended to take into

account future cores.

B. Modifications of the tile structure

To improve timing predictability and worst-case perfor-

mance, we modify both the tiles and the NoC of the SoCLib-

based many-core. However, we retain the global organization

of the many-core, and in particular its distributed shared

memory model which allows programming using general-

purpose tools. Fig. 2 pictures the structure of the computing

tile in the original SoCLib many-core, and Fig. 3 its modified

version.
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Fig. 2. The computing tile of the original many-core architecture

c) The memory subsystem.: Our objective here is to

improve timing predictability by eliminating contentions. In

our experiments with the original SoCLib-based many-core,

the second most important source of contentions (after the

NoC) is the access to the unique RAM bank of each tile. To

reduce these contentions, we decided to follow the example

of existing industrial many-core architectures [30], [20], and

replace the single RAM bank of a tile with several memory

banks that can be accessed independently.
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Fig. 3. Modified computing tile of our architecture

To facilitate timing analysis, we separate data (including

stack) and program memory. One RAM bank is used in

each tile to store the program of all the CPUs of the tile.

Data and stack are stored on a multi-bank RAM. Each bank

of the data RAM has a separate connection to the local

interconnect. RAM banks of a tile are assigned contiguous

address ranges, so that they can store data structures larger

than a single tile. Explicit allocation of data onto the memory

banks, along with the use of lock-based synchronization and

the local interconnect presented below allow the elimination

of contentions due to concurrent access to memory banks.

Note that the use of a multi-bank data RAM also removes a

significant performance bottleneck of the original architecture.

Indeed, a single RAM bank can only serve 4 CPUs (placing

more than 4 CPUs per tile result in no performance gain

because the RAM access is saturated). Having multiple RAM

banks per tile removes this limitation. Our test configurations

use a maximum of 16 CPU cores per tile and two data RAM

banks per CPU core, for a maximum of 4Mbytes of RAM per

tile.

d) The local interconnect: It is chosen in our design

so that it cannot introduce contentions due to its internal

organization. Contentions can still happen, for instance, when

two CPUs access concurrently the program memory. However,

accesses from different sources to different targets never

introduce contentions. Interconnect types allowing this are the

full crossbars and the multi-stage interconnection network [31]

such as the omega networks, the delta networks, or the related

logarithmic interconnect [32]. The experiments of this paper

use a full crossbar interconnect.
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e) The CPU core: The original architecture uses a single-

issue, in-order, pipelined implementation of the MIPS32 ISA

with no speculative execution. We did not change this, as

it simplifies timing analysis and allows small-area hardware

implementation. However, significant work has been invested

in designing a cycle-accurate model of this core inside a state-

of-the art WCET analysis tool [33].

f) The caches: They have been significantly modified.

The original design featured caches with a pseudo-LRU

(PLRU) replacement policy and with a writing policy that is

intermediate between write-through and write-back.1 Memory

accesses from the data and instruction caches of a single CPU

were multiplexed over a single connection to the local inter-

connect of the tile. All these choices are known to complicate

timing analysis and/or to reduce the precision of the analysis

[34], [35], and thus we revert to more conservative choices:

We use the LRU replacement policy, a fully write-through

policy, and we let the instruction and data caches access the

local tile interconnect through separate connexions. Note that

the use of a write-through policy reduces the processing speed

of each CPU. This is the only modification we made on the

architecture that decreases processing speed.

g) Synchronization: To improve temporal predictabil-

ity, and also speed, our architecture does not use interrupt-

based synchronization. Interrupt signaling by itself is fast, but

handling an interrupt usually requires accesses to program

memory which take supplementary time. Furthermore, arrival

date imprecision and modifications of the cache state result

in supplementary imprecision during static timing analysis.

To avoid these performance and predictability problems, we

replace the interrupt unit present in each tile of the original ar-

chitecture with a hardware lock component. These components

allow synchronization with very low overhead (1 non-cached

local RAM access) and without modifications of the cache

state. The lock unit follows a simple request/grant protocol.

h) Buffered DMA: The traditional DMA unit used in the

original architecture requires significant software control to

determine when a DMA operation is finished so that another

can start. This is either done using interrupt-based signaling,

which has the problems mentioned above, or through polling

of the DMA registers, which requires significant CPU time

and imposes significant constraints on CPU scheduling.

To avoid these problems, we use DMA units allowing the

buffering of transmission commands. A CPU can send one

or more DMA commands while the previous DMA operation

is not yet completed. Furthermore, the DMA unit can be

programmed so that it not only sends out data, but also signals

the end of the transmission to the target tile by granting a lock,

as described in Section IV. Thus, all inter-tile communication

and synchronization can be performed by the DMA units, in

parallel with the data computations of the CPUs and without

requiring significant CPU time for control.

C. Modifications of the NoC

The DSPIN network-on-chip [16] is a classical 2D mesh

NoC. It uses wormhole packet switching and a static routing

1Consecutive writes inside a single cache line are buffered.

scheme2. Each router of the command or response NoC has

the internal structure of Fig. 4. Each NoC router is connected

Fig. 4. Structure of a DSPIN NoC router

through FIFO links with the 4 neighboring routers (denoted

with North, South, West, East) and with the local comput-

ing tile. Each of these connections is realized through one

demultiplexer and one multiplexer. The demultiplexer ensures

the routing function (X-first/Y-first). It reads the headers of

the incoming packets and, depending on the target address,

sends them towards one of the multiplexers of the router.

The multiplexer ensures the arbitration (scheduling) function.

When two packets arrive at the same time (from different

demultiplexers), a fair Round Robin arbiter is used to decide

which one will be transmitted first. Once the transmission of

a packet is started, it cannot be stopped.3

The fair arbitration scheme is well-adapted to applications

without real-time requirements, for which it ensures a good

use of NoC resources. But when the objective is to provide

real-time guarantees and to allocate NoC resources according

to application needs, it is better to use some other arbitration

mechanism. In our case, the objective is to provide the best

possible support for the implementation of static computation

and communication schedules. Therefore, we rely on a pro-

grammed arbitration approach where each router multiplexer

enforces a fixed packet transmission order specified under the

form of a communication program.

Fig. 5. Programmed arbitration in a NoC router multiplexer

Enforcing fixed packet transmission orders requires the use

2X-first routing for the command network and Y-first for the response
network.

3Unless a two-level virtual channel mechanism is used, as described in
[16].
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of new hardware components called router controllers. These

components are present in the tile description of Fig. 3 and

their interaction with the NoC router multiplexers is realized as

pictured in Fig. 5. Each multiplexer of the command network

is controlled by its own controller running a separate program.

The program is loaded onto the component through the local

interconnect. The interface between router controller and the

local interconnect is also used to start or stop the router

controller. When the controller is stopped, the fair arbiter of

DSPIN takes control. In Fig. 5, the arbitration program will

cyclically accept 26 packets from the Local connection, then

26 packets from the West connection.

More details on the implementation and properties of our

programmed arbitration mechanism can be found in [7].

IV. SOFTWARE ORGANIZATION

On the hardware architecture defined above, we use non-

preemptive, statically-scheduled software with lock-based

inter-processor synchronization. To ensure both performance

and predictability, we require that software follows the orga-

nization rules detailed in this section.

i) Data locality: We require computation functions to

only operate on local tile data. If a computation needs data

from another tile, this data is first transferred to the local

data RAM. Under this hypothesis, the timing (WCET/BCET)

analysis of computation functions can be performed without

considering the NoC.

j) Inter-tile data transfers: They are only performed

using the DMA units. The CPUs still retain the possibility of

directly accessing RAM banks of other tiles, but they only

do so during the boot phase (which follows the standard

protocol of the MIPS32 ISA), or for non-real-time code

running on many-core tiles allocated to such code. Traffic

generated directly by CPUs and their caches has very small

grain (usually a single data word per memory write access),

and it is difficult to accurately predict its timing. Thus, not

allowing it to traverse the NoC largely simplifies the timing

analysis of both NoC transfers and CPU code [36].

Inter-tile data transfers and synchronizations are only per-

formed through write transactions performed by the DMA unit

of the sending tile. Thus, the response NoC only carries 2-flit

acknowledge packets, so that contentions on the response NoC

are negligible even in the absence of programmed arbitration.

This is why router controllers are only used for the command

NoC multiplexers, leaving unchanged the fair arbiters on the

response network.

k) Allocation of the tile memory: The memory allocation

scheme we used for automatic code generation and for the case

studies makes several assumptions. First, we assume that the

programs of all CPUs in a tile are stored in the local program

memory. This amounts to either assuming that this memory

is a non-volatile one, or that the loading of the program is

performed during a boot phase, so that the NoC only transfers

data.

Second, we allocate one of the data RAM banks for the

stacks of all the CPUs of the tile. Using only one RAM bank

for all the stacks is possible because our applications only

make little use of the stack (most data is explicitly allocated

by our tool on the other memory banks).

Allocating all programs (respectively all stacks) on a single

memory bank means that the cost of a cache miss due to a

program (resp. stack) memory access can be very high, due

to interference from the other CPU cores of the tile. However,

the (relatively) small size of the programs (resp. stacks) means

that misses seldom occur. For applications with large programs

or with significant use of the stack, other memory allocation

approaches can be used.

All data RAM banks except the stack-dedicated one are

allocated to data variables. To each data variable we associate a

contiguous memory region with statically-defined start address

and length. The length of the region must be equal to the

worst-case size of the data type of the variable (which must

be provided by the programmer).

A. Communication and synchronization

The allocation of memory regions to the data variables

and the synchronization between computations and commu-

nications must ensure that no data RAM bank is accessed

from two sources at the same time. Under the previously-

made assumptions, a RAM data bank can be accessed from 3

sources: local tile CPU caches, local tile DMA, and incoming

NoC data sent by the DMA of some other tile.

In our framework based on static real-time scheduling,

ensuring exclusive access to memory banks amounts to:

• Building a scheduling table where no two computations

or communications read or write the same piece of data

at the same time, and

• Implementing the scheduling table (and more precisely

allocating the variables to the memory banks) in a way

that preserves this exclusive access property.

The off-line scheduling algorithms we use, which are pre-

sented in [8], ensure the first property. Code generation ensures

the second property through the use of hardware locks.

We illustrate this with an example involving inter-tile com-

munications. We consider the scheduling table of Fig. 6. This

figure provides part of a larger scheduling table for a NoC with

the topology of Fig. 1. We only included here the allocation

and scheduling for one CPU of tile (1,1), one CPU of tile

(2,2), and the communication resources along the path from

DMA In
(1,1)

N(1,1)
(1,2)

N(1,2)
(2,2) (2,2)

0

ti
m

e

500

1000

1500

F

H

G

CPU
(1,1,0)

CPU
(2,2,0)

G
(cont.)

x

y

x x x

y

z

Fig. 6. Partial view of a scheduling table with inter-tile communications
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tile (1,1) to tile (2,2).4 These resources are, in order, the DMA

of tile (1,1), the NoC link from the router of tile (1,1) to that

of tile (1,2), the NoC link between the routers (1,2) and (2,2),

and the link from the router of tile (2,2) to the tile (2,2). We

assume that processor CPU(1, 1, 0) executes the functions F

and H , and processor CPU(2, 2, 0) executes function G. We

also assume that F produces data x, y, and z, and that x is

needed by G, z is needed on tile (0,1), and y is needed on tile

(1,2).

Each vertical lane of the scheduling table shows the time

windows allocated on one resource for the execution of one

operation (computation or communication). For instance, our

scheduling table allocates CPU(1, 1, 0) for the execution of

F between dates 0 and 500 (time is measured in clock cycles).

Scheduling tables represent cyclic execution patterns, meaning

that once the pattern of the table is completed it immediately

restarts. Thus, one operation can start in one cycle of the table

and complete in a subsequent one (building such tables must

follow the rules laid out in [11]). In our case, CPU(2, 2, 0)
is reserved for the execution of G starting at date 907 in one

cycle (the date when the x produced in the current cycle is

fully available on tile (2,2)) and until date 507 in the next cycle

(when the first words of x of the for the next cycle arrive on

tile (2,2)).

Note that the scheduling table is correct, in the sense that

it ensures that the memory zone allocated to x on tile (2,2) is

never accessed by both G and the transmission of x. However,

the implementation of this scheduling pattern can only make

use of the lock-based inter-processor synchronization mecha-

nism defined above. In the general case, two locks are needed:

one to ensure that G starts after the reception of x (produced

in the current cycle), and the other to ensure that no part of x

arrives on tile (2,2) before G of the previous cycle completed

its execution, and the timing overhead due to these locks must

be taken into account during the construction of the scheduling

table through overheads added to the durations of the various

operations (otherwise, the table may be unimplementable).

Another cost that must be taken into account during con-

struction of the scheduling tables is that of DMA control

by the CPUs. This cost is very small, but it is not zero

(the cost of issuing a DMA command by a CPU is over-

approximated at 30 clock cycles). When implementing the

scheduling table of Fig. 6, CPU(1, 1, 0) must start 3 DMA

operations in every cycle. Due to the non-preemptive execution

model, these operations cannot be initiated during execution

of H (as pictured in the table). Given the ordering constraints,

the commands must be issued at the end of F and before H

starts. The scheduling of operations on processors must take

into account the timing overhead due to these operations.

V. RESULTS

We have evaluated our mapping and code generation method

on a platooning automotive application described in [37], and

on a parallel Cooley-Tukey implementation of the integer 1D

4Naming convention: the tiles are identified by their (x,y) coordinates in
the 2D mesh, and the CPU identifiers use a third integer to identify the CPU
inside the tile.

radix 2 FFT over 214 samples [38]. We chose these two

applications because they allow the computation of tight lower

bounds on the execution cycle makespan and because for the

FFT the cited reference provides a mapping onto NoC-based

2D tiled MPPAs. This allows for meaningful comparisons,

while no tool equivalent to ours exists to provide another basis

for evaluation. Evaluation is done on the 3x4 MPPA pictured

in Fig. 1, where we assume that input data arrives on Tile(0, 0)
and the results are output by Tile(2, 3).

For both applications, after computing the WCET of the

tasks and the WCCT of the data transmissions, the mapping

tool (described in more detail in [8]) was applied to build

a running implementation and to compute execution cycle

makespan and throughput guarantees. Then, the code was

run, and its performances measured. This allowed us to check

the functional correctness of the code and to determine that

our tool produces very precise timing guarantees. Indeed,

the difference between predicted and observed makespan and

throughput figures is less than 1% for both examples, which

is due to the precision of our mapping algorithms and to the

choice of a very predictable execution platform.

The generated off-line schedule (and the resulting code) has

good real-time properties. For both the CyCab and the FFT, we

have manually computed lower bounds on the execution cycle

makespan.5 The lower bounds computed for the CyCab and

FFT examples were lower than the makespan values computed

by our algorithms by respectively 8.9% and 3.4%.

For the FFT example, we have also compared the measured

makespan of our code with that of a classical NoC-based

parallel implementation of the FFT [38] running on our

architecture. For our code, the NoC was statically scheduled,

while for the classical implementation it was not. Execution

results show that our code had a latency that was 3.82%

smaller than the one of the classical parallel FFT code. In other

words, our tool produced code that not only has statically-

computed hard real-time bounds (which the hand-written

code has not) but is also faster.

Our mapping heuristics favor the concentration of all com-

putations and communications in a few tiles, leaving the others

free to execute other applications (as opposed to evenly spread-

ing the application tasks over the tiles). The code generated

for Cycab has a tile load of 85%-99% for 6 of the 12 tiles

of the architecture, while the other tiles are either unused or

with very small loads (less than 7%). Using more computing

tiles would bring no latency or throughput gains because our

application is limited by the input acquisition speed. In the

FFT application the synchronization barriers reduce average

tile use to 47% on 8 of the 12 MPPA tiles. Note that the

remaining free processor and NoC time can be used by other

applications. Also note that these results are obtained using

an allocation and scheduling heuristic whose sole objective

is the optimization of speed (latency and throughput). Other

heuristics may be needed when the optimization objective

5To compute these lower bounds we simplify the hardware model by
assuming that the resources N(i, j)(k, l) generate no contention (i.e. they
allow the simultaneous transmission of all packets that demand it). We only
take into account the sequencing of operations on processors and DMAs and
the contentions on resources In(i, j).
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includes power consumption or thermal management issues.

Finally, we have measured the influence of static schedul-

ing of NoC communications on the application latency, by

executing the code generated for Cycab and the FFT with and

without NoC programming. For Cycab, not programming the

NoC results in a speed loss of 7.41%. For the FFT the figure

is 4.62%.

VI. ONGOING WORK: THE H.264 CASE STUDY

Mapping techniques based on off-line scheduling are tradi-

tionally used on applications with little data-dependent control

(represented under the form of execution modes or conditional

execution). Such applications are usually at the core of safety-

critical embedded control systems, and dedicated languages

(such as Scade or Simulink [39]) exist for their specification.

However, it is an open question what types of specification can

realistically be mapped using off-line scheduling approaches.

This question bears high practical significance today, when

complex embedded systems are composed of multiple appli-

cations with different characteristics which must be mapped

on the same platform.

To understand the limits of our mapping approach, and

thus clarify the price to pay for the good results of the

previous section, we consider a very different application class

(telecommunications/video streaming), and an application in-

volving significant data-dependent control: a decoder for the

popular H.264 [40] video format. Our objective is to determine

under which H.264 encoding options the decoding process

can be given an efficient implementation relying on off-line

scheduling.

Significant work exists on parallelizing H.264 and its suc-

cessor HEVC [41], [42], and some of this work explicitly

addresses the issue of statically parallelizing the decoding pro-

cess. However, existing work mainly considers architectures

where the frames used for motion compensation are stored

in a central memory, known as the frame buffer, which the

decoding threads that run in parallel access concurrently. This

memory organization is used in Fig. 7, which pictures the tasks

of the H.264 implementation in the task and communication

graph formalism used by the Design Space Explorer tool [43]

developed for SoCLib.

In this implementation, the H.264 data stream is read by

a traffic generator task TG. The stream is then sent to the

Split task, which detects the markers delimiting frame slices.

These slices are then dispatched to the decoding pipelines in a

round-robin manner. After decoding, the decoded image slice

leave the Decode tasks. Slice data from the different pipelines

are joined by the Merge task and sent on to the RAMDAC

for display. Each pipeline is mapped onto a separate MPPA

tile. The TG and Split tasks on the one hand, the Merge and

RAMDAC tasks on the other hand, are mapped together on an

input and output tile, respectively.

The use of a central frame buffer is known to be a

bottleneck in existing decoders. However, little can be done

if no restrictions are imposed on the H.264 encoding process,

because in the most general case no bound is imposed on the

motion vector lengths or on the distance between a frame and

the reference frame(s) used for motion compensation.

The use of motion vector bounds has already been proposed

in [41] to facilitate the static mapping of the H.264 decoder.

What we propose is to use these bounds to allow the complete

removal of the central frame buffer, which is to be replaced

with small frame buffers associated with each MPPA tile. Our

approach relies on representing the application under the form

of a dependent task system encoded as a data-flow program

written in a synchronous language similar to Scade [39]. Such

a representation allows automatic parallel mapping using the

tool presented above. The motion vector and reference frame

bounds allow limiting the dependencies between the data-flow

blocks, which in turn allows the mapping of each block (with

its input buffers) in the constrained memory space of an MPPA

tile.

Note that the memory organization of the original H.264

decoder is representative of a large class of parallel ap-

plications where multiple threads directly access (read and

write) shared data using semaphore-based synchronization

mechanisms. Our ongoing work on H.264 shows that for some

of these algorithms it is possible to put them in a data-flow

form facilitating predictable implementation.

The performance evaluation of our technique will have to:

• Compare the performance of the code generated by our

approach against that of existing implementations relying

on a centralized frame buffer.

• Determine the efficiency loss in H.264 encoding due to

constraints imposed by the off-line mapping approach.

VII. CONCLUSION AND PERSPECTIVES

We have shown that taking into account the fine detail of the

many-core hardware and software architecture allows real-time

implementation of very good precision and predictability. We

have also shown that it is possible to achieve this with limited

modifications to a general-purpose many-core platform, which

allows us to use, unmodified, existing tools for optimized

code generation and timing analysis (which largely reduces

the overall cost of the approach).

In addition to these results, which mainly show the advan-

tages of our approach, we have also presented ongoing work

on the H.264 case study, which is meant to better identify

its limitations. In this case, the limitations are materialized as

constraints on the H.264 encoding parameters, and thus the

efficiency of the encoding process.
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