Magnitude and complex based diffusion signal reconstruction

Abstract : In Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) the mod-eling of the magnitude signal is complicated by the Rician distribution of the noise. It is well known that when dealing instead with the complex valued signal, the real and imaginary parts are affected by Gaussian distributed noise and their modeling can thus benefit from any estimation technique suitable for this noise distribution. We present a quantitative analysis of the difference between the modeling of the magnitude diffusion signal and the modeling in the complex domain. The noisy complex and magnitude diffusion signals are obtained for a physically realistic sce-nario in a region close to a restricting boundary. These signals are then fitted with the Simple Harmonic Oscillator based Reconstruction and Estimation (SHORE) bases and the reconstruction performances are quantitatively compared. The noisy magni-tude signal is also fitted by taking into account the Rician distribution of the noise via the integration of a Maximum Likelihood Estimator (MLE) in the SHORE. We discuss the performance of the reconstructions as function of the Signal to Noise Ra-tio (SNR) and the sampling resolution of the diffusion signal. We show that fitting in the complex domain generally allows for quantitatively better signal reconstruction, also with a poor SNR, provided that the sampling resolution of the signal is ade-quate. This applies also when the reconstruction is compared to the one performed on the magnitude via the MLE.
Type de document :
Communication dans un congrès
CDMRI'14, Sep 2014, Boston, United States. Computational Diffusion MRI 2016. 〈http://cmic.cs.ucl.ac.uk/cdmri14/program.html〉. 〈10.1007/978-3-319-〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01095127
Contributeur : Marco Pizzolato <>
Soumis le : lundi 15 décembre 2014 - 10:29:33
Dernière modification le : jeudi 11 janvier 2018 - 16:23:48
Document(s) archivé(s) le : samedi 15 avril 2017 - 08:45:01

Fichier

Pizzolato et al - Magnitude an...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Marco Pizzolato, Aurobrata Ghosh, Timothé Boutelier, Rachid Deriche. Magnitude and complex based diffusion signal reconstruction. CDMRI'14, Sep 2014, Boston, United States. Computational Diffusion MRI 2016. 〈http://cmic.cs.ucl.ac.uk/cdmri14/program.html〉. 〈10.1007/978-3-319-〉. 〈hal-01095127〉

Partager

Métriques

Consultations de la notice

252

Téléchargements de fichiers

244