
HAL Id: hal-01095344
https://inria.hal.science/hal-01095344

Submitted on 15 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Applying Belief Revision to Case-Based Reasoning
Julien Cojan, Jean Lieber

To cite this version:
Julien Cojan, Jean Lieber. Applying Belief Revision to Case-Based Reasoning. Computational Ap-
proaches to Analogical Reasoning: Current Trends, 548, Springer, pp.133 - 161, 2014, Studies in
Computational Intelligence, �10.1007/978-3-642-54516-0_6�. �hal-01095344�

https://inria.hal.science/hal-01095344
https://hal.archives-ouvertes.fr

Applying belief revision to case-based reasoning

Julien Cojan1 and Jean Lieber2,3,4

1 INRIA Sophia-Antipolis, Wimmics Project, France
2 Université de Lorraine, LORIA, UMR 7503—54506 Vandœuvre-lès-Nancy, France

3 CNRS—54506 Vandœuvre-lès-Nancy, France
4 Inria—54602 Villers-lès-Nancy, France

Julien.Cojan@inria.fr

Jean.Lieber@loria.fr

Abstract. Adaptation is a task of case-based reasoning (CBR) that aims at mod-
ifying a case to solve a new problem. Now, belief revision deals also about mod-
ifications. This chapter studies how some results about revision can be applied to
formalize adaptation and, more widely, CBR. Revision operators based on dis-
tances are defined in formalisms frequently used in CBR and applied to define an
adaptation operator that takes into account the domain knowledge and the adap-
tation knowledge. This approach to adaptation is shown to generalize some other
approaches to adaptation, such as rule-based adaptation.

1 Introduction

Case-based reasoning and belief revision are two domains in which the notions of sim-
ilarity and modification play an important role.

Case-based reasoning (CBR [1]) is a reasoning process using a case base, where
a case is a representation of a problem-solving episode, in general, in the form of a
problem-solution pair. CBR aims at solving a target problem and generally consists
in a retrieval step (selection of one or several case(s) from the case base that is/are
similar to the target problem), an adaptation step (modification of the retrieved case(s)
to propose a solution to the target problem), and a possible storage of the case formed
by the target problem and its solution.

Belief revision is the process of changing a belief base about a static world by
incorporating new beliefs while keeping the belief base consistent. When the old beliefs
are inconsistent with the new beliefs, the formers have to be modified in order to restore
consistency with the latters. Usually, belief revision is based on the minimal change
principle [2]: most of the old beliefs should be kept. One way to measure change (so
that it is minimal) is to use a similarity metric (to be maximized) or a distance (to be
minimized).

Thus, the question raised is whether the modification performed during CBR could
be performed by a belief revision operator. This question has been addressed in several
publications and this chapter gives a synthesis of some of them.

The chapter is organized as follows. Some preliminaries about CBR are given in
section 2. Section 3 introduces belief revision. In CBR, the modifications are per-
formed during the adaptation step, section 4 is the core of the chapter and describes

revision-based adaptation from a theoretical viewpoint and with a few examples. More
globally, belief revision can be applied to CBR as a whole as section 5 shows. Several
revision operators have been implemented for different formalisms, together with their
revision-based adaptation functions. Some of them are gathered in REVISOR (http:
//revisor.loria.fr), a system that is briefly described in section 6. Finally sec-
tion 7 concludes the chapter.

2 Preliminaries

2.1 Formalism

The approach to CBR presented in this chapter can be applied to a variety of represen-
tation languages. It is assumed that there exists a representation language L: a formula
is an element of L. The semantics of L is given by a (possibly infinite) set U and by
a function Mod : ϕ ∈ L 7→ Mod(ϕ) ∈ 2U , defining, in a model-theoretical manner,
the semantics of L: a is a model of ϕ if a ∈ Mod(ϕ); ϕ1 entails ϕ2 (ϕ1 |= ϕ2) if
Mod(ϕ1) ⊆ Mod(ϕ2); ϕ1 and ϕ2 are equivalent (ϕ1 ≡ ϕ2) if Mod(ϕ1) = Mod(ϕ2).
A subsetA of U is representable inL if there exists a formula ϕ such that Mod(ϕ) = A.

It is assumed thatL is stable under conjunction, which means that for everyϕ1, ϕ2 ∈
L there exists a formula denoted by ϕ1 ∧ ϕ2 such that Mod(ϕ1 ∧ ϕ2) = Mod(ϕ1) ∩
Mod(ϕ2).

Some formalisms are stable under negation (or complement), which means that for
every ϕ ∈ L, there exists a formula denoted by ¬ϕ such that Mod(¬ϕ) = U \Mod(ϕ).
For such formalisms, ϕ2 ∨ ϕ2 is an abbreviation for ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 ⇒ ϕ2 is an
abbreviation for ¬ϕ1∨ϕ2 and ϕ1 ⇔ ϕ2 is an abbreviation for (ϕ1 ⇒ ϕ2)∧(ϕ2 ⇒ ϕ1).

Propositional logic with n variables is an example of such a formalism: U denotes
the set of interpretations on the variables. Every A ⊆ U is representable in this logic.

2.2 Case-based reasoning: principles and notations

For CBR, U is called the case universe. A case instance a is, by definition, an ele-
ment of U : a ∈ U . A case C is a class of case instances: C ∈ 2U (in this chapter, a
case represents a class of experiences, it is what is called an ossified case in [1] and a
generalized case in [3]). For instance, when the formalism is propositional logic with n
variables, U is the set of the 2n interpretations and a case C is represented by a formula
ϕ: C = Mod(ϕ).

A source case is denoted by Source: it is a case of CaseBase (the case base).
The target case is denoted by Target: it is the input of the CBR system. In many
applications, the source cases Source are specific: each of them represents a single
case instance a (Source = {a}). By contrast, the target case specifies only its “problem
part” and needs to be completed by a “solution part”. The aim of the CBR process is to
perform this completion:

CBR : (CaseBase, Target) 7→ ComplTarget

with ComplTarget ⊆ Target (1)

Usually, this inference is decomposed into two steps:

Retrieval : (CaseBase, Target) 7→ Source ∈ CaseBase

Adaptation : (Source, Target) 7→ ComplTarget

In many CBR applications, a case instance a can be decomposed into a problem
part x and a solution part y: a = (x, y). Let Upb and Usol be the universes of problem
and solution instances: x ∈ Upb, y ∈ Usol, U = Upb × Usol. A source case Source is
decomposed in a source problem srce ∈ 2Upb and its solution Sol(srce) ∈ 2Usol , thus
Source = srce × Sol(srce) that is interpreted as: for all x ∈ srce there exists y ∈
Sol(srce) such that a = (x, y) is a licit case (i.e., y solves x). The solution part of the
target problem is unknown, thus Target = tgt× Usol, where tgt is called the target
problem. When cases are decomposed in problems and solutions, CBR aims at solving
the target problem tgt, thus ComplTarget = tgt × Sol(tgt) where Sol(tgt) ∈
2Usol . In general, a target problem is specific: it is a singleton, i.e., tgt = {xt} with
xt ∈ Upb. This problem-solution decomposition is not needed to present revision-based
adaptation but it is a prerequisite for other approaches to adaptation mentioned in the
chapter. When cases are decomposed in problem and solution parts, it is common to
consider the adaptation problem as an analogical problem represented by the following
diagram:

tgtsrce

Sol(srce) Sol(tgt) (2)

that can be read as “Sol(tgt) is to Sol(srce) as tgt is to srce” (transformational
analogy [4]) or “Sol(tgt) is to tgt as Sol(srce) is to srce” (derivational anal-
ogy [5]). In other words, adaptation aims at solving an analogical problem.

The domain knowledge DK is a knowledge base giving a necessary condition for a
case instance to be licit. Thus, the domain knowledge can be represented by a subset
DK of U and for each a ∈ U , a 6∈ DK involves that a is not licit. When the case universe
is decomposed in Upb × Usol, a = (x, y) 6∈ DK means that y is not a solution of x or
that x and/or y are meaningless (i.e., they are objects represented in the language that
have no correspondence in the real world, e.g., in the domain of zoology, a cat that is
not a mammal). Having no domain knowledge (or not taking it into account) amounts
to DK = U .

Each source case is assumed to be consistent with the domain knowledge, i.e.,

DK ∩ Source 6= ∅ (3)

Similarly, if a target case is inconsistent with the domain knowledge, it has not to be
considered for the CBR inference (the system has to reject it before the retrieval). Thus,
if Target is an input of the adaptation procedure, it is required that

DK ∩ Target 6= ∅ (4)

The result of adaptation must also be consistent with DK, therefore:

DK ∩ ComplTarget 6= ∅ (5)

(It can be noted that (4) is a consequence of (1) and (5).)

2.3 Distances and metric spaces

A distance on a set U is defined in this chapter as a function d : U ×U → [0; +∞] such
that d(a, b) = 0 iff a = b (the properties of symmetry and triangle inequality are not
required in this chapter). Let b ∈ U and A, B ∈ 2U . The usual abbreviations are used:

d(A, b) = inf
a∈A

d(a, b) d(b, A) = inf
a∈A

d(b, a) d(A,B) = inf
a∈A,b∈B

d(a, b)

By convention, the infimum on the empty set is +∞, e.g., d(A, ∅) = +∞. A is said to
be closed under d if

{b ∈ U | d(A, b) = 0} = {b ∈ U | d(b, A) = 0} = A (closeness of A)

A metric space is an ordered pair (U , d) where d is a distance on U .5

If U = IRn (where IR is the set of the real numbers), a L1-distance is a distance d
parametrized by a base B of the vector space U such that

d(a, b) =

n∑
i=1

|vi − ui| (L1 distance)

where (u1, u2, . . . , un) (resp., (v1, v2, . . . , vn)) is the representation of a (resp., of b)
in B. When B is the canonical base, ui = ai and vi = bi for each i ∈ {1, 2, . . . n}.
By extension, if U is a subset of IRn, a distance d on U that is the restriction of a L1

distance on IRn is also called a L1 distance on U (for example, if U = ZZn where ZZ is
the set of integers).

If U = IBn where IB = {true, false}, the weighted Hamming distance with
weights (w1, w2, . . . , wn) (where wi > 0) is defined, for a = (a1, a2, . . . , an) and
b = (b1, b2, . . . , bn) by

d(a, b) =

n∑
i=1

{
0 if ai = bi

wi else

The Hamming distance is the weighted Hamming distance with wi = 1 for each i ∈
{1, 2, . . . , n}. An interpretation in propositional logic with n variables is assimilated
to an element of IBn, hence the notion of weighted Hamming distance between such
interpretations.

5 Calling it a metric space is an abuse of the usual mathematical language, since d does not
necessarily verifies all the postulates of a distance metric. However, the term metric space is
used in this chapter with this generalized meaning, for the sake of simplicity.

3 Belief revision

3.1 Belief revision in propositional logic

In [2], postulates of belief revision are proposed in a general logical setting. These
postulates are based on the idea of minimal change. They are applied to propositional
logic in [6] which presents 6 postulates that a belief operation u has to verify in this
formalism: given ψ and µ, two belief bases, ψ u µ is a revision of ψ by µ. One of these
postulates states that u is independent to syntax:

if ψ1 ≡ ψ2 and µ1 ≡ µ2 then ψ1 u µ1 ≡ ψ2 u µ2 (6)

where ψ1, ψ2, µ1, and µ2 are formulas representing beliefs. As a consequence of (6),
a formula ϕ can be assimilated to Mod(ϕ), the set of its models: in the rest of the
chapter, formulas and subsets of U are used indifferently. Then, the other 5 postulates
can be rewritten as follows (using subsets of U , the set of interpretations, instead of
propositional formulas):

(u1) A u B ⊆ B.
(u2) If A ∩B 6= ∅ then A u B = A ∩B.
(u3) If B 6= ∅ then A u B 6= ∅.
(u4) (A u B) ∩ C ⊆ A u (B ∩ C).
(u5) If (A u B) ∩ C 6= ∅ then A u (B ∩ C) ⊆ (A u B) ∩ C.

(A, B, and C are subsets of U .) The interpretation of these postulates is made further
(in section 4.3), for their application to revision-based adaptation.

Intuitively, to revise A by B, the idea is to modify minimally A into A′ so that
A′ ∩B 6= ∅, and then A u B = A′ ∩B. Now, there are many ways to model minimal
modifications. Among them, there is the modification based on a distance d on U (fig-
ure 1 illustrates it): given λ ∈ IR with λ ≥ 0, Gdλ(A) is the generalization (a kind of
modification) of A ⊆ U defined by

Gdλ(A) = {b ∈ U | d(A, b) ≤ λ}

Then, the revision operator ud is defined by

A ud B = Gdδ(A) ∩B where δ = inf{λ | Gdλ(A) ∩B 6= ∅}

Note that the infima on U are always reached when U is finite, which is the case when
U is the set of interpretations over n propositional variables. This kind of revision op-
erators is a direct generalization of the Dalal revision operator [7], which is based on
the Hamming distance between propositional interpretations. The following equivalent
definition can be given:

A ud B = {b ∈ B | d(A, b) = δ} where δ = d(A,B)

(the δ’s in the two definitions are equal).

U

A = Gd
0(A)

Gd
1(A)

Gd
2(A)

Gd
3(A)

B

A ud B

Fig. 1: Illustration of a distance-based revision operator in propositional logic. The set
of interpretations is mapped to a finite subset of the plan and the distance between inter-
pretations corresponds to a distance in the plan. A is generalized step by step (Gd1(A),
Gd2(A), etc.) until the generalized step A′ = Gdλ(A) intersects with B. The result is
A ud B = A′ ∩B.

3.2 Belief revision in a metric space

The (u1-5) postulates can be straightforwardly generalized to other formalismsLwhere
U is (a priori) any set and each formula ϕ of L is assimilated to a subset Mod(ϕ) of U .
In this generalization, A, B and C are sets assumed to be representable in L.

Given a distance d on U , ud can be defined as above but it must be noticed that ud

may not satisfy the (u1-5) postulates. This issue is considered further, in section 4.4.
The representability issue must also be addressed in this generalization, thus we

propose the following postulate:

(u6) For any ψ, µ ∈ L, there exists ρ ∈ L such that Mod(ρ) = Mod(ψ) u Mod(µ).

In propositional logic, for any operatoru, this postulateis particularly holds, since every
subset of the set U of the interpretations of propositional variables is representable in
this logic.

3.3 Integrity constraint belief merging

Let ψ1, ψ2, . . . , ψk, and µ be k + 1 belief bases. Merging ψ1, ψ2, . . . , ψk, given the
integrity constraint µ consists in building a belief base ϕ such that ϕ |= µ and ϕ keeps
“as much as possible” from the ψi’s. A merging operator

4 :
(
µ, {ψi}1 ≤ i ≤ k

)
7→ ϕ = 4µ

(
{ψi}1 ≤ i ≤ k

)

is assumed to satisfy some postulates similar to the postulates for a revision operator
(in [8], such postulates are defined in propositional logic but can be easily generalized
to metric spaces). Actually, the notion of integrity constraint extends the notion of belief
revision in the sense that if 4 is such a merging operator, then u defined by ψ u µ =
4µ({ψ}) satisfies the (u1-5) postulates.

4 Revision-based adaptation

This section defines revision-based adaptation (subsection 4.1), presents an example
in propositional logic (subsection 4.2), studies its properties (subsection 4.3), describes
with details revision-based adaptation in metric spaces (subsection 4.4), mentions briefly
an extension to multiple case adaptation (subsection 4.5), relates this approach to adap-
tation with other approaches to adaptation (subsection 4.6) and gives pointers on other
work related to revision-based adaptation (subsection 4.7).

4.1 Definition

Let U be the case universe and u be a revision operator on U . The u-adaptation is
defined as follows [9]:

ComplTarget = (DK ∩ Source) u (DK ∩ Target) (7)

(DK ∩ Source) (resp., (DK ∩ Target)) is the source (resp., target) case interpreted
within the domain knowledge (i.e., case instances known to be not licit are removed).
Thus (7) can be interpreted as a minimal modification of the source case to satisfy the
target case, given the domain knowledge, knowing that the minimality of modification
is the one associated with the operator u.

4.2 Example in propositional logic

Let us consider the following story. Léon is about to invite Thècle and wants to prepare
her an appropriate meal. His target problem can be specified by the characteristics of
Thècle about food. Let us assume that Thècle is vegetarian (denoted by the propositional
variable v) and that she has other characteristics (denoted by o) not detailed in this
example:

Target = v ∧ o

From his experience as a host, Léon remembers that he had invited Simone some times
ago and he thinks that Simone is very similar to Thècle according to food behavior,
except that she is not a vegetarian (¬v ∧ o). He had proposed to Simone a meal with
salad (s), beef (b), and a dessert (d), and she was satisfied by the two formers but has
not eaten the dessert, thus Léon has retained the source case

Source = (¬v ∧ o) ∧ (s ∧ b ∧ ¬d)

Besides that, Léon has some general knowledge about food: he knows that beef is meat,
that meat and tofu are protein foods, and that vegetarians do not eat meat. Moreover, the

only protein food that he is willing to cook, apart from meat, is tofu. Thus, his domain
knowledge is

DK = b⇒ m ∧ m ∨ t⇔ p ∧ v ⇒ ¬m

where b, m, t, and p are the propositional variables for “some beef/meat/tofu/protein
food is appreciated by the current guest”. According tou-adaptation, what meal should
be proposed to Thècle? Ifu is the Dalal revision operator, theu-adaptation of the meal
for Simone to a meal for Thècle is

ComplTarget ≡ DK ∧ Target ∧ (s ∧ t ∧ ¬d)

In [9], this adaptation is qualified as conservative: the salad and the absence of dessert is
reused for the target case and, though the beef is not kept (to ensure a consistent result),
the consequence of b that is consistent with DK, i.e., p, is kept, and thus, t is proposed
instead of beef (since v ∧ p |=DK t; in other words, some protein food is required, the
only vegetarian protein that Léon is willing to cook is tofu, thus there will be tofu in the
meal).

4.3 Properties

The (u1-6) postulates entail some properties of revision-based adaptation.
(u1) applied to u-adaptation gives ComplTarget ⊆ DK ∩ Target, which entails

the property (1) required for the adaptation process (cf. section 2.2) and the fact that
ComplTarget ⊆ DK (no instance case a known to be illicit—a ∈ U \ DK—is in the
result).

Let us assume that DK ∩ Source ∩ Target 6= ∅. Then, (u2) entails that
ComplTarget = DK ∩ Source ∩ Target. This means that if the target case is con-
sistent with the source case, given the domain knowledge, then it can be inferred by
u-adaptation that Source solves Target. This is consistent with the principle of this
kind of adaptation: ComplTarget is obtained by keeping from Source as much as
possible, and if no modification is needed then no modification is applied.

(u3) gives: if DK∩Target 6= ∅ then ComplTarget 6= ∅. Since ComplTarget ⊆ DK

(cf. (u1)), DK ∩ ComplTarget 6= ∅, which is a property required by an adaptation
operator (cf. equation (5), section 2.2).

According to [6], (u4) and (u5) capture the minimality of modifications. Thus they
express the minimality of modification made by au-adaptation. This can be interpreted
as follows. The conjunction of (u4) and (u5) can be reformulated as:{

Either (A u B) ∩ C = ∅,
Or (A u B) ∩ C = A u (B ∩ C).

(8)

Let F represent some additional features about the target problem: the new target
case is Target2 = Target ∩ F . If ComplTarget is consistent with F , then (u4)
and (u5) entail that the adaptation of Source to Target2 gives ComplTarget2 =
ComplTarget∩F . In other words, if F does not involve needs on modifications (corre-
sponding to an inconsistency) then the result of theu-adaptation can be reused straight-
forwardly.

(u6) involves that ComplTarget is representable in L.

4.4 Revision-based adaptation in metric spaces

In this section, ud-adaptation is considered on a metric space (U , d). This study is
motivated by applications of CBR which are frequently based on attribute-value for-
malisms, where the attributes range frequently in simple domains (numeric domains,
Boolean, etc.). Thus, the first idea was to study revision for such formalisms, but it
appeared that the more general framework of metric space was a better level of study
(particularities of attribute-value formalisms did not add much to the study). Therefore,
this has involved the necessity to study revision in this framework. This section goes
from general to specific. First, revision in (U , d) is considered according to the revi-
sion postulates. Then, it is applicated to attribute-constraint formalisms (that include
attribute-value formalisms), which is further applicated to formalisms of linear con-
straints, leading to a practical algorithm for revision in this case. Finally, a practical
application to the cooking domain is presented.

The (u1-6) postulates in metric spaces

This section studies the revision postulates for ud. Some of these postulates are not
satisfied by ud and some additional assumptions on the representation language L and
on d are proposed that are sufficient conditions for their satisfaction (recall that the
subsets A, B, and C of U involved in postulates (u1-5) are representable in L).

(u1) is always satisfied by ud (direct consequence from the definition of ud).
(u2) is not always satisfied by ud as the following counterexample shows. Let

U = IR and let L be the language of intervals of IR, e.g., [0; 1[= {a ∈ U | 0 ≤ a < 1}.
Let d : (a, b) 7→ |b − a|. It can be shown that [0; 1[ud [0; 1[= [0; 1] 6⊆ [0; 1[. Now, let
us consider the following additional assumption about the formalism L:

(L1) Every subset A of U that can be represented in L is closed under d.

Under this assumption, (u2) is satisfied as proven hereafter. LetA andB be two subsets
of U such that A is closed and A ∩B 6= ∅. Thus, d(A,B) = 0 and

A ud B = {b ∈ B | d(A, b) = 0}
= {b ∈ U | d(A, b) = 0} ∩B
= A ∩B since A is closed

Therefore A ud B = A ∩B and (u2) is satisfied.
(u3) is not always satisfied by ud as the following counterexample shows. Let U

and d be the same as in the counterexample of (u2). Let A = [0; 1] and B =]2; 3]. B 6=
∅ but A ud B = ∅. This suggests that A and B should be closed but even if the (L1)
assumption was made, (u3) may be not satisfied. Figure 2 presents a counterexample
of (u3) with A and B, two closed sets. Now, let us consider the following assumption:

(L2) For every A and B non empty subsets of U representable in L, the distance
between A and B is always reached: there exist a ∈ A and b ∈ B such that
d(A,B) = d(a, b).

x

y

A = {(x, y) ∈ U | y = 0}
x

B = {(x, y) ∈ U | x > 0 and y = 1/x}

Fig. 2: A counterexample of (u3). U = IR2, d is a L1 distance on U , L is chosen so
thatA,B and ∅ are representable in this formalism, which is consistent with assumption
(L1), sinceA andB are closed under d. Finally,B 6= ∅. Despite these facts,A u B = ∅
(since d(A,B) = 0 and no element of B is at distance 0 from an element of A).

Under this assumption, (u3) is satisfied as proven hereafter. Let A,B ∈ 2U such that
B 6= ∅. If A = ∅, d(A,B) = d(A, b) = +∞ for every b ∈ B, thus A ud B = B 6= ∅.
If A 6= ∅ and if A and B are representable in L then (L2) entails that d(A,B) =
d(a, b) for some (a, b) ∈ A × B. Since d(a, b) ≥ d(A, b) ≥ d(A,B) = d(a, b),
d(A, b) = d(a, b). Therefore, b is such that d(A, b) = d(A,B) thus b ∈ A ud B and
so, A ud B 6= ∅. So (u3) is satisfied.

If U = IRn, if d is a L1 distance on U , and if each A representable in L is closed
and bounded, then (L2) is satisfied. More generally, if d is a distance in the classical
mathematical sense (it verifies separation, symmetry, triangle inequality, and d(a, b) <
+∞ for every a, b ∈ U), and if everyA representable inL is a compact space, then (L2)
is satisfied.

(u4) and (u5) are always satisfied by ud as proven hereafter. The conjunction of
these postulates is equivalent to (8). Let A,B,C ∈ 2U . If (A ud B) ∩ C = ∅ then (8)
is verified. Now, assume that (A ud B) ∩ C 6= ∅ and let b ∈ (A ud B) ∩ C. Then
b ∈ (B ∩ C) and d(A, b) = d(A,B). Thus, the following chain of relations can be
established:

d(A,B) ≤ d(A,B ∩ C) ≤ d(A, b) = d(A,B)

(cf. the infimum appearing in the definition of d(A, ·) and the fact that b ∈ B ∩ C).
Therefore, these numbers are all equal and d(A,B) = d(A,B ∩ C). Hence

A ud (B ∩ C) = {b ∈ B ∩ C | d(A, b) = d(A,B ∩ C)}
= {b ∈ B ∩ C | d(A, b) = d(A,B)}
= {b ∈ B | d(A, b) = d(A,B)} ∩ C
= (A ud B) ∩ C

(u6) is not always satisfied by ud as the following counterexample shows. Let
U = IR2 and let L be the language of horizontal rectangles, i.e., for every ϕ ∈ L, there
exists [x1;x2] and [y1; y2], two intervals of IR, such that Mod(ϕ) = [x1;x2]× [y1; y2].
Now, let d be the distance on U defined by d(a, b) is the Euclidian distance rounded up

X x

y

A = {(0, 0)}

B

C

Fig. 3: A counterexample of (u6). A = [0; 0] × [0; 0] = {(0, 0)} and B = [1; 4] ×
[1; 3] are two subsets of U representable in the language L of horizontal rectangles,
though A ud B = C (where d is the Euclidian distance rounded up to integers) is not
representable in L. Indeed, C is the intersection of Gd2(A), the closed disk of radius 2
and centered on (0, 0), with B.

to integers (d(a, b) = dd2(a, b)e where d2 is the canonical Euclidian distance on IR2

and dxe is the smallest integer n such that x ≤ n). As illustrated by figure 3, A ud B
is a subset of U that is not representable in L.

Now, let us consider the following assumption:

(L3) For each A, subset of U representable in L, for each λ ∈ IR with λ ≥ 0, Gdλ(A)
is representable in L.

It is a sufficient condition for (u6). Indeed, if A and B is representable in L then (L3)
entails that Gdδ(A) is representable in L, with δ = d(A,B). Therefore, Gdδ(A) ∩ B =

A ud B is representable in L, since this formalism is stable under conjunction. So (u6)
holds. Note that (L3) is not a necessary condition for (u6).

Table 1 summarizes these results.

Attribute-constraint formalisms

Definitions. In this section, it is assumed that U = V1×V2× . . .×Vn where each Vi is
a “simple value” space, i.e. either IR (the set of real numbers), ZZ (the set of integers),
any interval of IR or ZZ, IB = {true, false}, or another set defined in extension. For
i ∈ {1, 2, . . . , n}, the attribute ai is the ith projection:

ai : (a1, a2, . . . , an) ∈ U 7→ ai ∈ Vi

(u1) is always satisfied.
Under assumption (L1), (u2) is satisfied.
Under assumption (L2), (u3) is satisfied.

(u4) is always satisfied.
(u5) is always satisfied.

Under assumption (L3), (u6) is satisfied.

Table 1: Conditions for having the revision postulates satisfied by a distance-based re-
vision operator.

A formula ϕ of the representation language is a constraint, i.e., a Boolean expression
based on the attributes ai: ϕ = P (a1, a2, . . . , an). The semantics of ϕ is

Mod(ϕ) = {a ∈ U | P (a1(a), a2(a), . . . , an(a))}

These formalisms contain propositional logic with n variables: Vi = IB (for each
i ∈ {1, 2, . . . , n}), knowing that the Boolean expressions are based on the Boolean
operations and, or, and not. For example, if n = 3, and a1 = o, a2 = t and a3 = v:

Mod(¬v ∨ o) = {(a1, a2, a3) ∈ U | or(not(a3), a1)) = true}

These formalisms also contain the attribute-value formalisms often used for repre-
senting cases in CBR [10]: a specific case C is defined by C = (a1 = v1) ∧ (a2 =
v2) ∧ . . . ∧ (an = vn) and thus C = {(v1, v2, . . . , vn)}. When problem-solution de-
composition is made, in general, the attributes are split in problem attributes (a1, . . . ,
ap) and solution attributes (ap+1, . . . , an). Classically, the distance used on U for the
retrieval is the weighted sum of distances on each problem attribute.

Application to the numerical case with linear constraints. Now, it is assumed that
each Vi is either IR or ZZ and each formula is a conjunction of linear constraints on

the attributes. A linear constraint is an expression of the form
n∑
i=1

αi · ai ≤ β where

α1, . . . , αn, β ∈ IR.
Let d be the L1 distance on U parametrized by a base B. It can be shown that ud

satisfies all the (u1-6) postulates (where A, B, and C are defined thanks to conjunc-
tions of linear constraints). ud-adaptation amounts to solve the following optimization
problem:

a ∈ DK ∩ Source (9)
b ∈ DK ∩ Target (10)

minimize
n∑
i=1

|vi − ui| (11)

where (u1, . . . , un) and (v1, . . . , vn) are the respective representations of a and b in the
base B. ComplTarget is the set of the b that solve this optimization problem.

In this optimization problem, (9) and (10) are linear constraints, but the function to
be minimized in (11) is not linear. However, this optimization problem can be solved
thanks to the solving of the following linear problem (introducing the new variables z1,
. . . , zn):

a ∈ DK ∩ Source
b ∈ DK ∩ Target
vi − ui ≤ zi (1 ≤ i ≤ n)
ui − vi ≤ zi (1 ≤ i ≤ n)

minimize
n∑
i=1

zi

It can be shown that the optimal values of a and b in the two optimization problems are
the same. Therefore, in this formalism,ud-adaptation amounts to a linear programming
problem, which is NP-complete if some Vi = ZZ but is polynomial when all Vi =
IR [11].

More details about this process can be found in [12].

A cooking application. This principle has been applied to a CBR system called Taaable
(http://taaable.fr) that has been a contestant of the CCC (Computer Cooking Con-
test, organized during the ICCBR conferences). The CCC provides a recipe base. A con-
testant of the CCC is a system that has to solve cooking problems using these recipes
(a case of this application is a recipe). These problems are specified by a set of de-
sired ingredients or dish types, and undesired ones (e.g., “I’d like a pear pie but I don’t
like cinnamon.”). Taaable has won the main challenge and the adaptation challenge of
this contest in 2010 [13]. The adaptation of ingredient quantities was made possible
thanks to a reduction to linear programming as mentioned before. Details can be found
in [13] but the idea, explained on a simplified example, is as follows. Suppose that the
user wants a recipe of a pear pie and that Taaable retrieves an apple pie. The domain
knowledge is expressed by linear constraints on these properties, such as:

massfruit = 120 · nbapple + 100 · nbpear
masssweet = masssugar + 10 · nbapple + 15 · nbpear

(these knowledge can be found in a free nutritional database). Each mass· is an attribute
on IR and each nb· is an attribute on IN (non negative integers). The source case is
a singleton {a} such that nbapple(a) = 4 and masssugar(a) = 40. The target case
corresponds to the constraint nbapple = 0 (the substitution of apples by pears is inferred
by a previous step similar to a u-adaptation in propositional logic). The ud-adaptation
leads to a maximal preservation of the attributes massfruit and masssugar and since the
pears contain more sweet than the apples, the mass of added sugar is lowered (there is
a sort of “compensation effect”). More precisely, the ud-adaptation (at least for some
base B) gives ComplTarget = {b} with nbpear(b) = 5 (the total fruit mass from
Source to ComplTarget is modified from 480 to 500) and masssugar(b) = 5 (the total
sweet mass is unchanged).

4.5 Multiple case adaptation

Some CBR systems retrieve several cases and then adapt them in order to solve the
target case:

Retrieval : (CaseBase, Target) 7→ {Sourcei}1 ≤ i ≤ k ⊆ CaseBase

Adaptation :
(
{Sourcei}1 ≤ i ≤ k , Target

)
7→ ComplTarget

This adaptation is called multiple case adaptation and is also known as case combina-
tion. Multiple case adaptation extends single case adaptation (which is a case combina-
tion with k = 1) in the same way as integrity constraint belief merging extends belief
revision (cf. section 3.3), hence the idea6 to use a merging operator4 on U to define a
multiple case adaptation process:

ComplTarget = 4DK∩Target

(
{DK ∩ Sourcei}1 ≤ i ≤ k

)
which generalizes (7).

This approach to multiple case adaptation is studied in [12].

4.6 Revision-based adaptation and other approaches to adaptation

Other approaches to adaptation have been defined in the CBR literature. This section
compares revision-based adaptation to some of them.

Adaptation by generalization and specialization

The principle of this adaptation is to generalize the source case and then to specialize
it to the target case. Since

– the source and target cases must be considered w.r.t. the domain knowledge and
– this generalization of the source case must be minimal so that it meets the con-

straints of the target case,

this kind of adaptation amounts to generalize minimallyA = DK∩Source intoA′ such
that A′ ∩ B 6= ∅ with B = DK ∩ Target. Therefore, it is a u-adaptation for which the
modification operation A 7→ A′ is a generalization (A ⊆ A′).

Conversely, ifu is a revision operator andA,B ∈ 2U ,A u B = A′∩B such thatA
has been modified minimally inA′. This modification is not necessarily a generalization
but if Â = A ∪ A′, then A ⊆ Â and A u B = Â ∩ B. Indeed, either A ∩ B 6= ∅ so
A′ = A and then Â = A, or A ∩ B = ∅ so Â ∩ B = (A ∪ A′) ∩ B = (A ∩
B) ∪ (A′ ∩ B) = ∅ ∪ (A′ ∩ B) = A u B. So, without loss of generality, it can be
considered that the modification of A done when revising A by any revision operator
on U is a generalization. Hence, u-adaptation can be considered as a formalization of
the general model of adaptation by generalization and specialization.

When the revision operator is based on a distance d, ud-adaptation can be read as
the composition of

6 Once suggested by Pierre Marquis. Thanks Pierre!

a generalization DK ∩ Source 7→ Gdδ(DK ∩ Source) and
a specialization Gdδ(DK ∩ Source) 7→ Gdδ(DK ∩ Source) ∩ DK ∩ Target.

To illustrate this idea, it can be noticed that the example of section 4.2 (when Léon
invites Thècle) of revision-based adaptation in propositional logic, can be redescribed
as an adaptation by generalization and specialization. First, the meal is generalized by
substituting beef by protein food (generalization motivated by the fact that Thècle is
vegetarian). Then, the generalized meal is specialized by substituting protein food by
tofu.

For the other approaches to adaptation considered below, the assumptions of problem-
solving decomposition (U = Upb × Usol, Source = srce × Sol(srce), Target =
tgt × Usol, ComplTarget = tgt × Sol(tgt)) and of specificities of the source case
and the target problem (Source = {a} = {(xs, ys)}, tgt = {xt}) are made.

Null adaptation, orthogonal revision operators and conservative adaptation

In [1], null adaptation is justified by the assertion “People often do little adaptation.”
This adaptation is defined by Sol(tgt) = Sol(srce). It is often used when the solution
space representation is very simple (e.g., a set of predefined categories). It is also used
when CBR is assimilated to a simple approximate reasoning method: if Sol(srce)
solves srce and srce is similar to tgt then it is likely that Sol(tgt) = Sol(srce)
approximately solves tgt. Under the following assumptions, u-adaptation coincides
with null adaptation:

(A1) No domain knowledge is considered (i.e., DK = U);
(A2) u is orthogonal,7 i.e. there exists two revision operators, upb on Upb and usol on

Usol, such that

(Apb ×Asol) u (Bpb ×Bsol) = (Apb upb Bpb)× (Asol usol Bsol) (12)

for any Apb, Bpb ∈ 2Upb and Asol, Bsol ∈ 2Usol .

Indeed, under these assumptions:

ComplTarget = (srce× Sol(srce)) u (tgt× Usol)
= (srce upb tgt)× (Sol(srce) usol Usol)

Therefore:

Sol(tgt) = Sol(srce) usol Usol
= Sol(srce) ∩ Usol (according to postulate (u2))
= Sol(srce)

7 This adjective is justified further in the chapter.

The intuition behind this notion of orthogonality of u is that the modifications are
made independently in the problem space and in the solution space. For example, if d is
a distance on U such that there exists a distance dpb on Upb and a distance dsol on Usol
with

d((x1, y1), (x2, y2)) = dpb(x
1, x2) + dsol(y

1, y2) (13)

for each (x1, y1), (x2, y2) ∈ U , then ud is orthogonal. Note that the reverse is not
true. For example, if d((x1, y1), (x2, y2)) =

√
dpb(x1, x2)2 + dsol(y1, y2)2 thenud is

orthogonal, though d cannot be written as in (13) in general.
Now, let us consider the situation when the assumption (A2) is made but the as-

sumption (A1) is not. Source is a singleton {(xs, xt)} consistent with DK, thus DK ∩
Source = {(xs, xt)}. Target = {xt} × Usol so:

DK ∩ Target = {(x, y) ∈ DK | x = xt} = {xt} × DKsol(x
t)

where DKsol(xt) = {y ∈ Usol | (xt, y) ∈ DK}

Therefore:

ComplTarget = {(xs, ys)} u ({xt} × DKsol(x
t))

= ({xs} upb {xt})× ({ys} usol DKsol(x
t)) (cf. (12))

= {xt} × ({ys} usol DKsol(x
t))

({xs} upb {xt} = {xt} is a consequence of (u1) and (u3)). So, the u-adaptation
consists in “repairing” the solution Sol(srce) = {ys} according to the constraint
DKsol(x

t), the repair being done by usol. Note that, it this process, neither upb nor
xs are used.

In the following, a u-adaptation with an orthogonal revision operator u is called a
conservative adaptation.8

Rule-based adaptation

Rule-based adaptation is the adaptation based on a set of adaptation rules. Following
the formalization of [14], an adaptation rule is an ordered pair (r,Ar) where r is a
binary relation on Upb and Ar is such that, for xs, xt ∈ Upb and ys ∈ Usol (Source =
{(xs, ys)}, Target = {xt} × Usol):

if xs r xt then Ar(x
s, ys, xt) = yt probably solves xt

The rule is not certain (hence the “probably”).
The adaptation rules can be composed as explained hereafter. Let AK be

the finite set of adaptation rules that are available to the CBR system. Let
AKpb = {r | (r,Ar) ∈ AK}.

8 In the first publications about u-adaptation, the term “conservative adaptation” was used for
any u-adaptation. Then, it has appeared that some u-adaptation could hardly be qualified as
conservative (see below), thus, from now on, the term of conservative adaptation is only used
for revision-based adaptation using an orthogonal revision operator.

R1 = Bacon can be sustituted by smoked tofu

R2 = In a salad dish, vinegar can be sustituted by lemon juice and salt

(a) Examples of rules.

xs = salad dish
salad dish
vegetarian

salad dish
vegetarian
no vinegar

= xt

R1 R2

ys =

lettuce
vinegar
olive oil
bacon

lettuce
vinegar
olive oil

smoked tofu

lettuce
lemon juice

salt
olive oil

smoked tofu

= yt

(b) An example of rule-based adaptation.

DK = lettuce⇒ green salad ∧ escarole⇒ green salad

∧ vegetarian⇒ ¬meat ∧ bacon⇒ meat

Source = salad dish ∧ lettuce ∧ vinegar ∧ olive oil ∧ bacon

Target = salad dish ∧ ¬vinegar ∧ vegetarian

AK = {R1, R2}
with R1 = bacon smoked tofu

and R2 = salad dish ∧ vinegar salad dish ∧ lemon juice ∧ salt

ComplTarget ≡ DK ∧ Target ∧ lettuce ∧ lemon juice ∧ salt ∧ olive oil ∧ smoked tofu

(c) Formalization of this example as a udAK -adaptation.

Target2 = Target ∧ ¬lettuce

(d) A new target case, slightly different from Target but which cannot be solved by rule-based
adaptation of Source given DK and AK (i.e., by udAK -adaptation).

ComplTarget2 = (DK ∧ Source) ud (DK ∧ Target2)

≡ DK ∧ Target2 ∧ green salad ∧ lemon juice ∧ salt ∧ olive oil ∧ smoked tofu

(e) Solving Target2 by ud-adaptation, where d is defined by equation (14), with d0 the
Hamming distance. This adaptation consists in applying R1, R2 and in removing lettuce.

ComplTarget2 |= green salad∧¬lettuce: the lettuce can be replaced by any other kind of green
salad, e.g., escarole.

Fig. 4: Rule-based adaptation and revision-based adaptation on an example.

AKpb provides a structure on Upb. A similarity path from xs ∈ Upb to xt ∈ Upb
is a path in (Upb, AKpb): it is a sequence of relations ri∈ AKpb such that there exist
x0, x1, . . . , xq ∈ Upb with x0 = xs, xq = xt, and xi−1 ri xi (1 ≤ i ≤ q). Given
such a similarity path, yt ∈ U that probably solves xt can be computed by applying
successively the rules (r1,Ar1), . . . , (rq , Arq): yi = Ari(x

i−1, yi−1, xi) for i taking
the successive values 1, 2, . . . , q. Finally, yt = yq probably solves xt. This can be
graphically represented by the following diagram, composed of q diagrams like the one
of (2), section 2.2:

xs = x0 x1 x2 xq−1 xq = xt

ys = y0 y1 y2 yq−1 yq = yt

r1 r2 rq

Ar1 Ar2 Arq

Figure 4(b) illustrates such a rule-based adaptation with a similarity path in two
steps, using rules of figure 4(a).

There may be several similarity paths from xs to xt. The choice between them is
usually based on a cost function such that if SP1 and SP2 are two similarity paths
from xs to xt and cost(SP1) < cost(SP2) then SP1 is preferred to SP2, which is
interpreted as “SP1 is more likely to lead to an appropriate solution to xt than SP2.”
The function cost is usually assumed to be additive, that is cost(SP) is the sum of
cost(r) for r a relation of SP . To each (r,Ar) ∈ AK, cost(r) > 0 is an information
associated with this adaptation rule.9

Let dAK be the distance on U defined by

dAK((x
s, ys), (xt, yt)) = min

cost(SP)

∣∣∣∣∣∣
SP : similarity path from xs to xt

such that the application of SP
on {(xs, ys)} gives yt


with the convention min ∅ = +∞. Let ComplTarget = tgt × Sol(tgt) be the re-
sult of udAK-adaptation without domain knowledge (U = DK). If there is no similarity
path from xs to xt, then ComplTarget = Target (the adaptation fails: it does not
add any information to the target case). Else, b = (xt, yt) ∈ ComplTarget iff yt is
obtained by application of a similarity path of minimal cost. Therefore, revision-based
adaptation includes rule-based adaptation. Moreover, DK can be taken into account in
udAK-adaptation, thus this enables to specify a rule-based adaptation taking into account
the domain knowledge. Conversely, if some adaptation knowledge AK in the form of
rules has been acquired (e.g., by means of knowledge discovery and data-mining tech-
niques [15, 16]), this can be useful to specify a relevant revision operator. Indeed, there

9 A coarse modeling of this cost is cost(r) = − logP where P is the probability that yt is a
licit solution of xs. Thus, the additivity of the cost corresponds to an independence assumption
of the q adaptation steps.

are many possible revision operators and the adaptation knowledge enables to make
some choices among them.

Figure 4(c) illustrates how the rule-based adaptation of figure 4(b) can be formalized
by a revision-based adaptation using udAK .

A limitation of rule-based reasoning is that it can fail, meaning that there is no
similarity path from xs to xt (d(xs, xt) = +∞), which involves that ComplTarget =
Target. This is particularly true when there are few adaptation rules. Indeed, if AK ⊆
AK′ then dAK(a, b) ≥ dAK′(a, b) so if udAK′ -adaptation fails then udAK-adaptation fails.
One way to overcome this limitation is to combine this kind of adaptation with another
approach to adaptation and the principle of revision-based adaptation can be used to
formalize this combination. This idea is formalized as follows. Let us assume that the
other approach to adaptation that has to be combined with rule-based adaptation can be
formalized as a revision-based adaptation and let d0 be a distance on U such that this
adaptation coincides with the ud0 -adaptation (intuitively, this adaptation is a “novice”
adaptation, hence the 0 in d0). The ud-adaptation with d defined below combines rule-
based adaptation with ud0 -adaptation (for a, b ∈ U):

d(a, b) = inf
c∈U

(WAK · dAK(a, c) +W0 · d0(c, b)) (14)

where WAK and W0 are two positive constants. When AK = ∅, d = d0 (intuitively: with
no adaptation knowledge, the adaptation process is a novice). If the infimum above
is reached on c = (xc, yc), the ud-adaptation consists in a rule-based adaptation of
Source = {a} to solve {xc} and then a ud0 -adaptation of c to solve the target case.

Figure 4(d) presents an example of adaptation that cannot be solved by rule-based
adaptation using the two rules of figure 4(a) but can be solved byud-adaptation accord-
ing to equation (14).

Differential calculus as a u-adaptation

First-order differential calculus rely on the equation

dyj =
∑
i

∂yj
∂xi

dxi

where x 7→ y is a differentiable function from IRp to IRq . dxi and dyj can be inter-
preted as small differences and substituted respectively by xti − xsi and ytj − ysj when
xs and xt are similar and thus can be seen as a way to adapt Source = {(xs, ys)} in
order to solve Target = {xt} × Usol. In this adaptation process,

{
∂yj
∂xi

}
ij

constitutes

the adaptation knowledge: it represents how a solution descriptor is modified when a
problem descriptor is modified.

In the following, we restrict ourselves to a differentiable function f : IR → IR,
though the principle presented below can be generalized to f : IRp → IRq . Thus Upb =
Usol = IR.

A first-order approximation approximation of f in xt is

yt = xs + %s(xt − xs) (15)

The best choice for %s is %s = f ′(xs) (where f ′ is the differential of f): this choice is
the best in the sense that f ′(xs) is the only %s such that

yt − (ys + %s(xt − xs)) =
xt−→xs

o(xt − xs)

(this is a direct consequence of the definition of differentials). The adaptation knowl-
edge of this first-order approximation is %s (either defined for each source case or more
globally).

The adaptation defined in (15) coincides with the ud-adaptation with DK = U and
d defined by

d((xs, ys), (xt, yt)) = |xt − xs|+ |yt − ys − %s(xt − xs)| (16)

(the value of %s when {(xs, ys)} is not a source case does not matter here so it can be
chosen arbitrarily).

From this, conclusions similar to the conclusions about rule-based adaptation can
be drawn. First, u-adaptation makes it possible to incorporate domain knowledge in
this first-order approximation. Then, the knowledge of the adaptation knowledge (%s)
can be used to parametrize the revision operator.

Let (−→ε1 ,−→ε2) be the canonical base of IR2: −→ε1 = (1, 0), −→ε2 = (0, 1). Let {(xs, ys)}
be a fixed source case. The distance defined by (16) is the L1 distance parametrized
by the base (−→e1 ,−→e2) with −→e1 = −→ε1 + %s−→ε2 and −→e2 = −→ε2 (%s is a constant here, since
{(xs, ys)} is fixed). The base (−→e1 ,−→e2) is orthogonal w.r.t. (−→ε1 ,−→ε2) iff %s = 0. Now,
when %s = 0, d can be written as in (13) thus ud is an orthogonal revision operator
(which justifies a posteriori the adjective “orthogonal”: cf. note 7). So, if the base B is
orthogonal, ud-adaptation is a conservative adaptation.

Other approaches to adaptation

There are other adaptation approaches described in the literature. Most of them are
domain-specific and defined by their algorithms. However, there is at least one other
general approach to adaptation: the case-based adaptation [17, 18] (also known as re-
cursive CBR [19]). The idea is that the adaptation of a CBR system can be a CBR
system itself where cases are adaptation cases. This approach to adaptation still remains
to be formalized in order to be compared to revision-based adaptation.

4.7 Other studies related to revision-based adaptation

Some other studies related to revision-based adaptation have been carried out. Two of
them are explained below.

Adaptation in the description logic ALC

Description logics (DLs) form a family of formalisms that are equivalent to fragments
of first-order logic [20].10 The most used semantics of DLs is based on the theory of
models, as this is the case for, e.g., propositional logic. However, given the collection
U of all the interpretations of a DL, it is uneasy (if not impossible) to define a distance
on U . Therefore, the authors have not considered any more the idea of defining a ud

revision operator for a DL and have searched in another direction.
In [21], the existence of a belief contraction operator satisfying the postulates of

contraction is studied for various DLs (belief contraction is an operator on belief bases
that has been related to belief revision through the so-called Harper and Levi indenti-
ties). There are also some research and implementations on the related issue of repairing
inconsistent DL knowledge bases [22].

In [23], an approach to adaptation in the DL ALC (the simplest propositionally
closed DL) has been proposed that is inspired by the principle of revision-based adap-
tation (though it has not defined a revision operator dealing with any knowledge bases
of this DL). The principle of this adaptation in ALC is based on the semantic tableau
method and on inconsistency repairing. The semantic tableau method is used to check
the consistency of a DL knowledge base. Roughly said, it consists in applying a set
of deductive rules whenever it is possible and then, to detect the clashes (a clash is a
contradiction of an easy to detect predefined form). If there is a clash in each reasoning
branch, then the knowledge base is inconsistent, otherwise it is consistent (provided that
the set of rules have some completeness property). The adaptation in ALC consists in
(1) “pretending” that the source case solves the target problem, (2) applying the seman-
tic tableau method which leads to clashes, and (3) applying a clash repairing strategy
that minimizes a repair cost.

The following example illustrates this approach to adaptation in ALC, using the
first-order logic syntax. This example is in the cooking domain and cases represent
recipes. The domain knowledge is expressed by the following formula:

DK = ∀x gratedRawCarrot(x)⇔ carrot(x) ∧ raw(x) ∧ grated(x)
∧ ∀x root(x)⇔ carrot(x) ∨ parsnip(x) ∨ celery(x)
∧ ∀x parsnip(x)⇒ ¬raw(x)

(the first line expresses what grated raw carrots are, the second line means that the only
roots that are considered in this example are carrots, parsnips and celeries, the third line
means that a parsnip in a recipe must not be raw). The source case is represented by
a formula about a constant σ representing a carrot salad, which is a starter with grated
raw carrot and vinaigrette as ingredients:

Source = starter(σ) ∧ ∃x ingredient(σ, x) ∧ gratedRawCarrot(x)
∧ ∃x ingredient(σ, x) ∧ vinaigrette(x)

The target case expresses the fact that the user wants the recipe of a starter without
carrot in it, by the following formula about the constant θ:

Target = starter(θ) ∧ ¬(∃x ingredient(θ, x) ∧ carrot(x))
10 Some DLs use constructs that go beyond standard first-order logic, such as concrete domains,

but this is not the case for ALC.

The three steps of the adaptation are as follows. (1) To pretend that the source case
solves the target case amounts to identify σ and θ (σ = θ). (2) DK∧Source∧Target∧
(σ = θ) is inconsistent; the tableaux method leads to the clash

between ∃x, ingredient(σ, x) ∧ carrot(x) (17)
and ¬∃x, ingredient(θ, x) ∧ carrot(x) (18)

(3) In order to repair this clash, the piece of knowledge of equation (17) is removed but
its consequence (given DK)

∃x, ingredient(θ, x) ∧ root(x) ∧ raw(x) ∧ grated(x) (19)

is kept. Thus, from (18), (19) and the domain knowledge, it can be deduced that

∃x, ingredient(θ, x) ∧ parsnip(x) ∧ raw(x) ∧ grated(x) (20)
or ∃x, ingredient(θ, x) ∧ celery(x) ∧ raw(x) ∧ grated(x) (21)

Now (20) leads to another clash, since the parsnip must not be raw. By contrast, the
celery can be eaten raw and does not lead to another clash. Therefore, the piece of
knowledge (20) is disgarded whereas (21) is kept and, finally:

ComplTarget ≡ DK ∧ starter(θ)
∧ ∃x ingredient(σ, x) ∧ celery(x) ∧ raw(x) ∧ grated(x)
∧ ∃x ingredient(σ, x) ∧ vinaigrette(x)

Adaptation of qualitative constraint networks

Qualitative algebras (QAs) constitute a family of knowledge representation formalisms.
For example, Allen algebra is a well-known QA dedicated to temporal representa-
tion [24] and RCC8 is a well-known QA dedicated to spatial representation [25]. A
qualitative constraint network (QCN) is a knowledge base of a QA; it is given by a set
of constraints between variables. Belief revision has been studied for QAs in [26]: a
revision operator u associating to a QCN ψ and a QCN µ a QCN ψ u µ is defined,
following principles of distance-based revision operators.11

Therefore, revision-based adaptation can be applied to a CBR system in which
cases are represented by QCNs. This has been studied in [27]. In a first application,
revision-based adaptation has been applied to adapt the preparation parts of cooking
recipes, for the system Taaable. The QA used was INDU [28], an extension of the Allen
algebra. In a second application, revision-based adaptation has been applied to adapt
a crop allocation in a farmland. The QA used was RCC8. This work has raised some
implementation issues that are addressed in the paper.
11 U corresponds to the set of scenarios, i.e., fully constrained QCNs. Mod(ϕ) is the set of the

scenarios that are more specific than the QCN ϕ. A distance d between scenarios is defined.
One problem is that if A = Mod(ψ) and B = Mod(µ), A ud B is not necessarily repre-
sentable by a QCN (i.e., postulate (u6) does not hold). In this case, to write it in a simplified
manner, a most specific QCN χ is chosen such that Mod(χ) ⊇ A ud B, and ψ u µ = χ.

The figure 5 illustrates revision-based adaptation in the Allen algebra (the figure
represents the different pieces of knowledge in this formalism—using the qualitative
constraint network notations for the most part—and the captions describe them in natu-
ral language, for reader non familiar with the Allen algebra). The story underlying this
example is an attribution of schedule to teachers. The source case corresponds to the
previous year. The target case corresponds to the fact that, for some reason, the French
teacher and the Math teacher want to avoid each other. The distance used in this exam-
ple is based on the distance between the Allen basic relations which are the distances in
the relation neighbourhood graph of this formalism (see [29]).

5 Revision-based CBR

Let SOURCE be the union of all the cases from the case base:

SOURCE =
⋃
i

Sourcei where CaseBase = {Sourcei}i

The following question can be raised: according to what conditions can the CBR pro-
cess with SOURCE as only source case be equivalent to the CBR process with CaseBase?
This question is addressed below with a ud-adaptation.

Let A1, A2, . . . , An, and B be n + 1 subsets of U . Let δi = d(Ai, B) and ∆ =
mini δi. The following equation holds:(⋃

i

Ai

)
ud B =

⋃
i,δi=∆

(Ai u
d B)

Indeed d(
⋃
iAi, b) = mini d(Ai, b) for any b ∈ B, and so (

⋃
iAi) u B = {b ∈

U | mini d(Ai, b) = ∆} =
⋃
i,δi=∆

(Ai u B).
From this equation applied to Ai = DK ∩ Sourcei and B = DK ∩ Target, it comes

that the ud-adaptation of SOURCE to solve Target gives COMPL_TARGET such that

COMPL_TARGET =
⋃

i,δi=∆

ComplTargeti

where ComplTargeti is the result of the ud-adaptation of Sourcei to solve Target.
First, let us consider that there is only one i such that δi = ∆. Then COMPL_TARGET =

ComplTargeti. Therefore if the retrieval process aims at selecting the source case
Sourcei ∈ CaseBase that minimizes d(DK ∩ Sourcei, DK ∩ Target) then

CBR({SOURCE}, Target) = CBR(CaseBase, Target) (22)

Now, let us consider that there are ex aequo source cases for such a retrieval process:
there are several source cases Source such that d(DK ∩ Source, DK ∩ Target) = ∆.
Then the equation (22) still holds if the two following modifications are made:

– Retrieval returns the set S of source cases Source minimizing d(DK∩Source, DK∩
Target);

for each x ∈ {French,History,Math} and each y ∈ {9:00-10:00, 10:00-11:00, 11:00-12:00}
x (eq ∨m ∨mi ∨ b ∨ bi) y x (s ∨ d ∨ f) Morning

9:00-10:00 10:00-11:00 11:00-12:00

French Math History

Morning

m m

s f

b ∨m ∨ bi ∨mi b ∨m ∨ bi ∨mi

b ∨m ∨ bi ∨mi

(a) DK. For each of the three courses and each of the three slots, either the course coincides with
the slot or it has an intersection of length 0 with it, moreover, the course takes place during the

morning. The slot 10:00-11:00 (resp., 11:00-12:00) immediatly follows the slot 9:00-10:00
(resp., 10:00-11:00). There is no intersection of length non null between two different courses.

9:00-10:00 10:00-11:00 11:00-12:00

French Math History

eq eq eq

(b) Source. The previous year, the slot 9:00-10:00 (resp., 10:00-11:00, 11:00-12:00) was
attributed to French (resp., Math, resp., History).

French Math
¬m ∧ ¬mi

(c) Target. The French course and the Math course must not meet any more. (Technically,
¬m ∧ ¬mi is an abbreviation for eq ∨ b ∨ bi ∨ d ∨ di ∨ f ∨ fi ∨ o ∨ oi ∨ s ∨ si.)

9:00-10:00 10:00-11:00 11:00-12:00

French Math History

eq

¬m ∧ ¬mi

eqeq

(d) ComplTarget (without the pieces of knowledge given by DK). The adaptation has consisted
in the exchange of slots between the Math teacher and the History teacher.

Fig. 5: Example of revision-based adaptation in the Allen algebra.

– Adaptation first performs a ud-adaptation of each Source ∈ S and then takes the
union of the results.

Therefore, if the distance d used forud-adaptation is also used for the retrieval pro-
cess as it is described above, the whole CBR inference can be specified by ud and DK:
DK is the “static” knowledge (stating that some case instances are not appropriate) and d
is the “dynamic” knowledge about the modification from a case instance to another one.
This can be linked to the general principle of “adaptation-guided retrieval” [30] stating
that the adaptation knowledge should be used during retrieval: a source case must be
preferred to another one if the former requires less “adaptation effort” (this adaptation
effort being measured thanks to d for ud-based CBR).

6 REVISOR: a set of revision-based adaptation engines

REVISOR gathers several adaptation engines under GPL license and is available
at http://revisor.loria.fr. In the current version, several engines have been de-
velopped.

REVISOR/PL implementsud and the corresponding revision-based adaptation, where
the formalism is propositional logic with a finite number of variables and where d
is the weighted Hamming distance between interpretations.

REVISOR/PLAK implements ud and the corresponding revision-based adaptation,
where the formalism is propositional logic with a finite number of variables and
where d is defined by equation (14) with d0 a weighted Hamming distance and AK

a set of adaptation rules defined by the user, together with their costs.
REVISOR/CLC implements ud and the corresponding revision-based adaptation,

where formulas are conjunctions of linear constraints with variables on ZZ and on
IR and where d is a L1 distance.

REVISOR/QA implements ud and the corresponding revision-based adaptation, in
one of the following qualitative algebras: the Allen algebra, INDU and RCC8.

REVISOR/CLC and REVISOR/QA have been used for the system Taaable.

7 Conclusion

Case-based reasoning systems use similarity (usually in the form of a similarity measure
or a distance). This is obvious for the retrieval of a case similar to the target case but
this chapter shows how it can be used for adaptation: an important class of revision
operators is based on distances. Indeed, ud-based adaptation can be reformulated as
the process of selecting the case instances that are the closest ones to the source case, in
the metric space (U , d), with constraints given by DK. Since adaptation aims at solving
a certain type of analogical problem (in which two of the four elements in the analogy
are problems, the other ones—including the unknown—are solutions), this approach
concretely relates analogical reasoning with belief revision.

This approach to adaptation has a good level of generality since it captures some
other approaches to adaptation. This is useful for at least two reasons. First, it proposes

a general framework for specifying adaptation, covering many approaches. Second, it
enables to modify an existing adaptation process by taking into account the domain
knowledge in this approach. For instance, rule-based adaptation does not consider the
domain knowledge (unless it is considered in the adaptation rules): it works on the
case universe U . Revision-based adaptation enables to re-specify it and then to have it
working in the case universe U ∩ DK (i.e., the case universe without the case instances
known to be illicit).

Finally, from our own experience, this way to consider adaptation, has appeared as
a useful guide to specify and to realize adaptation procedures.

However, even if revision-based adaptation would capture all the approaches to
adaptation (and we do not claim that it is the case), it would not close the investigations
about adaptation in CBR. Indeed, a revision operator is parametrized by a topology
(usually a distance) and the issue of the choice of an appropriate topology, is far from
being completely addressed. In fact, the choice of this topology is an adaptation knowl-
edge acquisition issue and an important aspect of the research on revision-based adapta-
tion is to have related this topology of the case universe with the adaptation knowledge.

References

1. Riesbeck, C.K., Schank, R.C.: Inside Case-Based Reasoning. Lawrence Erlbaum Associates,
Inc., Hillsdale, New Jersey (1989)

2. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the Logic of Theory Change: partial
meet functions for contraction and revision. Journal of Symbolic Logic 50 (1985) 510–530

3. Maximini, K., Maximini, R., Bergmann, R.: An investigation of generalized cases. In Ash-
ley, K.D., Bridge, D., eds.: Proceedings of the 5th International Conference on Case Base
Reasoning (ICCBR’03). Volume 2689 of LNAI., Trondheim, Norway, Springer (June 2003)
261–275

4. Carbonell, J.G.: Learning by analogy: Formulating and generalizing plans from past experi-
ence. In R. S. Michalski and J. G. Carbonell and T. M. Mitchell, ed.: Machine Learning, An
Artificial Intelligence Approach. Morgan Kaufmann, Inc. (1983) 137–161

5. Carbonell, J.G.: Derivational analogy: A Theory of Reconstructive Problem Solving and
Expertise Acquisition. In: Machine Learning. Volume 2. Morgan Kaufmann, Inc. (1986)
371–392

6. Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal change.
Artificial Intelligence 52(3) (1991) 263–294

7. Dalal, M.: Investigations into a theory of knowledge base revision: Preliminary report. In:
AAAI. (1988) 475–479

8. Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. Artificial Intelligence 157(1-2)
(2004) 49–79

9. Lieber, J.: Application of the Revision Theory to Adaptation in Case-Based Reasoning: the
Conservative Adaptation. In: Proceedings of the 7th International Conference on Case-Based
Reasoning (ICCBR-07). Lecture Notes in Artificial Intelligence 4626. Springer, Belfast
(2007) 239–253

10. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, Inc. (1993)
11. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica

4(4) (1984) 373–396
12. Cojan, J., Lieber, J.: Belief Merging-based Case Combination. In: Case-Based Reasoning

Research and Development (ICCBR 2009). (2009) 105–119

13. Blansché, A., Cojan, J., Dufour Lussier, V., Lieber, J., Molli, P., Nauer, E., Skaf Molli, H.,
Toussaint, Y.: TAAABLE 3: Adaptation of ingredient quantities and of textual prepara-
tions. In: 18h International Conference on Case-Based Reasoning - ICCBR 2010, "Computer
Cooking Contest" Workshop Proceedings. (2010)

14. Lieber, J., Napoli, A.: Correct and Complete Retrieval for Case-Based Problem-Solving.
In Prade, H., ed.: Proceedings of the 13th European Conference on Artificial Intelligence
(ECAI-98), Brighton, United Kingdom. (1998) 68–72

15. Craw, S., Wiratunga, N., Rowe, R.C.: Learning adaptation knowledge to improve case-based
reasoning. Artificial Intelligence 170(16-17) (2006) 1175–1192

16. d’Aquin, M., Badra, F., Lafrogne, S., Lieber, J., Napoli, A., Szathmary, L.: Case Base Min-
ing for Adaptation Knowledge Acquisition. In Veloso, M.M., ed.: Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI’07), Morgan Kaufmann, Inc.
(2007) 750–755

17. Jarmulak, J., Craw, S., Rowe, R.: Using Case-Base Data to Learn Adaptation Knowledge for
Design. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence
(IJCAI’01), Morgan Kaufmann, Inc. (2001) 1011–1016

18. Leake, D.B., Kinley, A., Wilson, D.C.: Acquiring Case Adaptation Knowledge: A Hybrid
Approach. In: AAAI/IAAI. Volume 1. (1996) 684–689

19. Stahl, A., Bergmann, R.: Applying Recursive CBR for the Customization of Structure Prod-
ucts in an Electronic Shop. In Blanzieri, E., Portinale, L., eds.: Advances in Case-Based Rea-
soning — Proceedings of the fifth European Workshop on Case-Based Reasoning (EWCBR-
2k). Lecture Notes in Artificial Intelligence 1898. Springer (2000) 297–308

20. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The De-
scription Logic Handbook. Cambridge University Press, cambridge, UK (2003)

21. Flouris, G., Plexousakis, D., Antoniou, G.: On Applying the AGM theory to DLs and OWL.
In Gil, Y., Motta, E., eds.: Proceedings of the 4th International Semantic Web Conference
(ISWC 2005). LNCS 3729, Springer (November 2005) 216–231

22. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.: Debugging unsatisfiable classes in OWL
ontologies. Web Semantics: Science, Services and Agents on the World Wide Web 3(4)
(2005) 268–293

23. Cojan, J., Lieber, J.: An Algorithm for Adapting Cases Represented in ALC. In: 22th
Internationational Joint Conference on Artificial Intelligence, Barcelone Espagne (07 2011)

24. Allen, J.F.: An interval-based representation of temporal knowledge. In: Proceedings 7th
International Joint Conference on Artificial Intelligence (IJCAI 1981). (1981) 221–226

25. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In:
Knowledge Representation. (1992) 165–176

26. Condotta, J.F., Kaci, S., Marquis, P., Schwind, N.: A Syntactical Approach to Qualitative
Constraint Networks Merging. In: Proc. of the 17th LPAR (Logic for Programming, Artificial
Intelligence and Reasoning). (2010) 233–247

27. Dufour-Lussier, V., Le Ber, F., Lieber, J., Martin, L.: Adapting Spatial and Temporal Cases.
In Ian Watson, B.D.A., ed.: International Conference for Case-Based Reasoning. Volume
7466 of Lecture Notes in Artificial Intelligence., Lyon, France, Amélie Cordier, Marie
Lefevre, Springer (September 2012) 77–91

28. Pujari, A.K., Kumari, G.V., Sattar, A.: INDU: An Interval & Duration Network. Advanced
Topics in Artificial Intelligence (1999) 291–303

29. Ligozat, G.: On generalized interval calculi. In: Proceedings of the 9th National Confer-
ence of the American Association for Artificial Intelligence (AAAI), Anaheim, CA, AAAI
Press/MIT Press (1991) 234–240

30. Smyth, B., Keane, M.T.: Using adaptation knowledge to retrieve and adapt design cases.
Knowledge-Based Systems 9(2) (1996) 127–135

