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Abstract

Answering Why-Not questions consists in explaining to developers of complex
data transformations or manipulations why their data transformation did not pro-
duce some specific results, although they expected them to do so. Different types
of explanations that serve as Why-Not answers have been proposed in the past and
are either based on the available data, the query tree, or both. Solutions (partially)
based on the query tree are generally more efficient and easier to interpret by de-
velopers than solutions solely based on data. However, algorithms producing such
query-based explanations so far may return different results for reordered conjunc-
tive query trees, and even worse, these results may be incomplete. Clearly, this
represents a significant usability problem, as the explanations developers get may
be partial and developers have to worry about the query tree representation of their
query, losing the advantage of using a declarative query language.

As remedy to this problem, we propose the Ted algorithm that produces the
same complete query-based explanations for reordered conjunctive query trees.

Dans le contexte de développement de transformations complexes, les réponses
à une question de type ‘Why-Not’ ont pour objectif d’expliquer au développeur les
raisons de l’absence de certaines réponses dans le résultat d’une transformation.

Plusieurs types d’explications ont été proposées et étudiées : des explications
basées sur les données, des explications basées sur l’arbre de la requête, des expli-
cations hybrides. Les explications qui s’appuient sur l’arbre de la requête, appelées
explications ‘query-based’ (query-based explanations) peuvent être calculées plus
efficacement et sont aussi plus faciles à interpréter par le développeur.

Cependant, les algorithmes connus produisant des explications ‘query-based’
donnent des résultats (1) qui sont dépendants des arbres de requêtes considérés,
(2) qui ne sont pas toujours complets. À l’évidence, cela pose un problème
d’utilisation important, parce que le développeur doit interpréter les explications
en fonction d’un arbre de requête perdant ainsi le bénéfice de l’utilisation d’un
langage de requêtes déclaratif et savoir que ces explications sont insuffisantes pour
expliquer l’absence de réponse.
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Cet article propose de remédier à ce problème avec un algorithme appelé Ted,
qui produit des explications ‘query-based’ complètes et équivalentes pour des ar-
bres de requêtes conjonctives réordonnés.

Keywords: data provenance, query analysis

1 Introduction

The increasing load of data produced nowadays is coupled with an increasing need for
complex data transformations that developers design to process these data in every-day
tasks, such as data cleaning or data enrichment. These transformations, commonly
specified declaratively, may result in unexpected outcomes. For instance, given the
query and data of Fig. 1, a developer (or scientist) may wonder why planet Kepler78b
is missing from the result, even though he expected or intended it to be part of it.
Traditionally, he would repeatedly manually analyze the query to identify a possible
reason, fix it, and test it to check whether the missing answer is now present or if other
problems need to be fixed.

To help developers during query analysis and debugging, and in particular for an-
swering why-not questions as the one used in the above example that asks why some
data are not part of a result, different algorithms have recently been proposed for rela-
tional and SQL queries [8, 7, 3, 2, 6] as well as other types of queries (top-k [5], reverse
skyline queries [10]). In this paper, we focus on relational queries, for which existing
algorithms explain a missing-answer either based on the data (instance-based explana-
tions), the query (query-based explanations), or both (hybrid explanations). Moreover,
we focus on solutions producing query-based explanations, as these are generally more
efficient while providing sufficient information for query analysis and debugging. Tak-
ing a closer look at existing methods, we notice that these return different explanations
for reordered query trees. This is due to the fact that these algorithms reason at the level
of query tree operators and trace data relevant to the missing-answer, i.e., compatible

data, through one particular instance of a query tree. On this particular query tree, they
identify at which picky operators compatible data are lost, and output these.

Example 1.1. Consider the SQL query Q and data D of Fig. 1 and assume that a

developer wants an explanation for the absence of planet Kepler78b in the query result

Q(D), knowing that this planet does not revolve around the Sun. So here, the why-

not question is “Why is tuple ((Planet:Kepler78b, Star:x), x 6=Sun) not in Q(D)?”.

Fig. 2 shows two possible query trees for Q. It also shows the picky operators that

Why-Not [3] (◦) and NedExplain [2] (⋆) return as query-based explanations as well as

query operators returned as part of hybrid explanations by Conseil [6] (•). It is easy

to see that each algorithm returns a different result for each of the two query trees, and

in most cases, it is only a partial result as the true explanation of the missing answer is

SELECT planet, star

FROM Planets P,

Stars S

WHERE P.SID = S.SID

AND P.mass <= 1

Planet
Planet Mass SID

Earth 1 1
Jupiter 317.8 1

Kepler37b 0.01 2
Kepler78b 1.7 NULL

Star
SID Star

1 Sun

2 Kepler37

Figure 1: Example query and data
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Πplanet,star

σp.mass≤1•

✶SID ◦ ⋆ •

Planet Star

Πplanet,star

✶SID ⋆

σp.mass≤1 ◦ ⋆ •

Planet

Star

Figure 2: Reordered query trees for the SQL of Fig. 1 and identified algorithms’ results
(Why-Not ◦, NedExplain ⋆, Conseil •)

that both the selection is too strict for the compatible tuple (Kepler, 1.7,NULL) from

table Planet and this tuple does not find any join partner in table Star.

To more accurately answer Why-Not questions, we propose the Ted algorithm that
identifies all the picky operators of a relational query and explains how they prevent the
generation of the desired answer. The proposed explanations take the form of a poly-
nomial, similarly to provenance semi-rings for how-provenance [4] that explain data
that exists in a query result. The main asset of this algorithm is that the computed set
of query-based explanations (i.e., the Why-Not answer) is independent from the query
tree representation and is thus not only correct, but also complete w.r.t. the provided
definitions. This paper sets the theoretical foundation for computing query-based ex-
planations that are invariant for reordered query trees for conjunctive queries (Sec. 2).
We then present Ted, a first algorithm computing such explanations and discuss pre-
liminary experiments (Sec. 3). Sec. 4 concludes and discusses future work.

2 Polynomial-Based Why-Not answers

We assume that the reader is familiar with the relational model and tableaux theory [1].
Here, we briefly revisit necessary notions of previously defined Why-Not questions in
Sec. 2.1. Sec. 2.2 reviews and extends what has been called compatible data in previous
works. Finally, we define the Why-Not answer in Sec. 2.3.

To better illustrate the different aspects of our solution, we resort to a more complex
example than the one introduced earlier.

Example 2.1. Assume a database schema SQ consisting of the relations R, S and T

and the database instance I in Fig.3(a). We use a unique annotation Id to identify a

tuple of I. Further consider the relational query in Fig. 3(b). The query result includes

the tuple {R.B:5, S.C:9, T.D:4}.

2.1 The Why-Not Question

Given a query Q over a database schema SQ1 and an input instance I, a developer
formulates a Why-Not question as a predicate P that is a disjunction of conditional
tuples (c-tuples) [9]. A full definition is available in [2]. Next, we will concentrate on
conjunctive queries only and predicates composed of a single c-tuple. The proposed
method trivially extends to unions of conjunctive queries and a general predicate P ,
but we omit a discussion for space constraints.

1Indeed SQ is the query schema of Q as defined in [2], which implies that each relation schema in SQ

occurs only once in Q.

3



R
A B

1 3 Id1
2 4 Id2
4 5 Id3
8 9 Id4

S
B C D

3 4 5 Id5
3 8 1 Id6
5 3 3 Id7
5 9 4 Id8

T
C D E

1 4 8 Id9
3 5 3 Id10
3 3 9 Id11

(a) Sample database instance I

πR.B,S.C,T.D
︸ ︷︷ ︸

op1

(((σR.A>3
︸ ︷︷ ︸

op2

(R)) ✶B
︸︷︷︸
op3

(σS.C≥8
︸ ︷︷ ︸

op4

(S))) ✶D
︸︷︷︸
op5

(σT.E≥3
︸ ︷︷ ︸

op6

(T )))

(b) sample query Q

Figure 3: Sample instance (a) and query (b)

A c-tuple tc has the form (tv, cond), where tv is a tuple with attribute values be-
ing variables and cond=

∧n

i=1 predi is a conjunction of atomic conditions s.t. each
predi is a comparison between a variable and a constant, or a comparison between two
variables. In the following, we will denote the condition associated with a c-tuple tc as
tc.cond and the set of variables referred to in tv as var(tv)2. Special attention has to be
given to the condition associated with the c-tuple tc. More specifically, we distinguish
here between simple and complex conditions.

Notation 2.1. (Simple/Complex condition/c-tuple) An atomic condition predi in a con-

dition cond is simple if it compares (a) a variable with a constant or (b) two variables

referring to source attributes of the same relation. Otherwise, it is a complex atomic

condition. We qualify cond as complex if it includes at least one complex atomic con-

dition, and simple otherwise. Finally, a c-tuple is simple if its condition cond is simple,

and complex otherwise.

Example 2.2. Given the scenario of Ex. 2.1, we wonder why there is not a result

tuple, s.t. the value of R.B is smaller than the one of T.D and on the same time

the value of S.C smaller or equal to 9. This Why-Not question is expressed by

tc=((R.B:x, T.D:y, S.C:z), (x<y ∧ z≤9)). In tc.cond, z≤9 is a simple condition

whereas x < y is a complex condition, because the variables x and y refer to different

relations (R and T , respectively). Consequently, tc is a complex c-tuple.

2.2 Compatible Data

Intuitively, compatible data designates any source tuples that could have provided data
to form the missing answer modelled by tc. The first step towards answering the Why-
Not question consists in identifying these source tuples and more specifically their
combinations that form the missing answer in the absence of restrictions in Q. In a
second step, discussed in the next section, we will identify query conditions (query
operators) that prune these tuple combinations.

Example 2.3. Continuing Ex. 2.2, tc.cond implies that the missing-answer is based

on a source tuple tx∈I|R, a source tuple ty∈I|T and a source tuple tz∈I|S for which

2We also use var(·) to retrieve the set of variables from other structures, e.g., var(tc.cond) returns the
variables for which constraints are specified.
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tx(R.B)<ty(T.D) and tz(S.C)≤9 holds3. Due to the complex condition, tx and ty
need to be chosen in correlation with one another, whereas tz is independent from all

others. We obtain (Id1Id9), (Id1Id10) and (Id2Id10) as compatible tuple concate-

nation for correlated (txty), while for tz each one of the tuples in S, i.e., Id5, . . . , Id8
comprises a compatible tuple concatenation.

Previous approaches [3, 2] consider all compatible tuples independently from each
other, e.g., they consider both Id1 and Id2 as compatible for tx. However, Id2 should
lose this property when Id9 is chosen for ty , a fact previously ignored. Therefore, in
this paper, we introduce the compatibility of a tuple concatenation rather than compat-
ibility on isolated tuples. According to our definition, each concatenated compatible
tuple (cc-tuple) would have resulted in the missing-answer if it was not pruned by some
query operators.

Tableau skeleton. We first define a tableau skeleton TSQ
, which is a set of variable

tuples, one for each relation schema in SQ, such that a variable is not used twice in
TSQ

. The relations in SQ are also used to identify the rows of TSQ
, as shown in Tab. 1.

R.A R.B T.C T.D T.E S.B S.C S.D
R x1 x2

T x3 x4 x5

S x6 x7 x8

Table 1: Tableau skeleton TSQ

Mappings. Our subsequent definitions require the mapping functions described and
illustrated in Tab. 2. Note that hvar(tc) is used to rename the variables var(tc) of tc into
variables in TSQ

. Both functions hA and hvar(tc) are extended to apply on the tableau
and the c-tuple conditions respectively. Finally, f naturally extends to concatenated
tuples, e.g., f(Id1Id5)=(R.A:1, R.B:3, S.B:3, S.C:4, S.D:5).

Function Purpose Example
hA : A → var(TSQ

) Notation for the map-
ping between attribute
names and variables in
TSQ

.

hA(R.A)=x1

h−1
A (x1) = R.A

hvar(tc) :
vat(tc)→ var(TSQ

)

Map variables of tc to
variables of TSQ

asso-
ciated to the same rela-
tion attribute.

hvar(tc)(x)=x2

hvar(tc)(y) = x4

hvar(tc)(z) = x7

f : ID → I
Maps a tuple annota-
tion to the actual tuple.

f(Id1) =
(R.A : 1, R.B : 4)

Table 2: Mapping functions

Compatible concatenated tuples. We are now ready to define cc-tuples. To
this end, we enrich TSQ

by the condition of cond=hvar(tc)(tc.cond) and a
summary Stc=hvar(tc)(var(tc.tv)). We thus obtain the compatibility tableau

3I|R denotes the instance of relation R and t(A) denotes the attribute value of tuple t on the qualified
attribute A.
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Ttc=(Stc , TSQ
, cond). For brevity, we will also use the notation Ttc=(TSQ

, cond)
(omitting the summary). A sub-condition R.cond can be associated with row R of Ttc

by restricting the conjunction cond to predicates predi sharing variables with var(R).
So, given TSQ

in Tab. 1 and the condition cond=(x2<x4 ∧ x7≤9), we obtain Ttc in
Tab. 3 (ignore the grouping of the rows for now).

R.A R.B T.C T.D T.E S.B S.C S.D cond
R x1 x2 x2 < x4

T x3 x4 x5 x2 < x4

S x6 x7 x8 x7 ≤ 9
Stc x2 x4 x7

Table 3: Tableau Ttc for our running example

Part1

Part2

Practically, Ttc models the pattern that a cc-tuple must match. For our example this
pattern is: (R.A:x1, R.B:x2, T.C:x3, T.D:x4, T.E:x5, S.B:x6, S.C:x7,

S.D:x8, x2 < x4 ∧ x7 ≤ 9). This leads to the following definition of a compatible
concatenated tuple w.r.t. Ttc .

Definition 2.1. (Compatible concatenated tuple w.r.t. Ttc ) Let I be an instance

of SQ={R1, . . . , Rn} and assume Ttc=(TSQ
, cond). Let τ=(Id1 . . . Idn) be s.t.

f(Idi)∈I|Ri
, ∀i∈[1, n]. Then τ is a compatible concatenated tuple (cc-tuple) w.r.t. Ttc

if f(τ) |= h−1
A (cond). We denote the set of cc-tuples w.r.t. Ttc given I as CCT (Ttc , I).

Example 2.4. For Ttc in Tab. 3 and τ=(Id1Id5Id9), it holds that

f(τ)=(R.A:1, R.B:3, S.B:3, S.C:4, S.D:5, T.C:1, T.D:4, T.E:8) and

h−1
A (cond)=(R.B<T.D ∧ S.C≤9). Since 3<4 and 4≤9, we get f(τ)|=h−1

A (cond)
and so τ is a cc-tuple w.r.t. Ttc . Totally, we find 12 cc-tuples for our running example.

2.3 The Why-Not answer

Given the set of cc-tuples CCT (Ttc , I), we define the Why-Not answer using again
the tableau skeleton TSQ

, this time to create the tableau Tτ=(Sτ , TSQ
, condτ , condQ).

Sτ=hA(f(τ)) is the summary while condτ and condQ denote rewritten conditions
induced by the cc-tuple τ and the query Q, respectively. Due to space limitation we
do not provide a formal definition of Tτ . Roughly, condτ embeds τ in the tableau and
condQ follows from the classical tableau built from Q [1]. We denote condτ,R and
condQ,R the restriction of the conditions to the row R.

Example 2.5. For τ1=(Id1Id9Id5) we obtain Tτ1 of Tab. 4.

Let us now illustrate how Tτ is used to identify picky atomic conditions and associ-
ated query operators from the query (and thus included in condQ) that are considered
responsible for pruning a cc-tuple τ from the query result.

Example 2.6. First, focus on τ1 and the first row R of Tab. 4. The atomic condition

x1=1 in condτ,R contradicts the atomic condition x1>3 of condQ,R. Thus, we say

that x1>3 is a picky condition. The atomic conditions on x2 in condτ,R and condQ,R

are simultaneously satisfied, as x2=3 ∧ x6=3 ∧ x2=x6 is true.

In the same way, we identify in the rest of the rows the picky atomic conditions and

eventually obtain the set of picky atomic conditions w.r.t. τ1: {x1>3, x7≥8, x4=x8}.
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R.AR.BT.CT.DT.ES.BS.CS.D condτ condQ
R x1 x2 x1 = 1 ∧ x2 = 3 x1 > 3 ∧ x2 = x6

T x3 x4 x5 x3 = 1 ∧ x4 = 4 ∧ x5 = 8 x4 = x8 ∧ x5 ≥ 3
S x6 x7 x8 x6 = 3 ∧ x7 = 4 ∧ x8 = 5 x2 = x6 ∧ x4 = x8 ∧ x7 ≥ 8
Sτ x1 x2 x3 x4 x5 x6 x7 x8

Table 4: Tableau Tτ1

Associating these conditions to their respective query operators (see Fig. 3), we obtain

the set of picky operators {op2, op4, op5}.

Notation 2.2. (Picky operators w.r.t. τ ). We define the set of picky conditions w.r.t.

τ as PCτ={c|c∈condQ and condτ 6|= c}. Each atomic condition c is associated

with a query operator op in Q, and we define the set of picky operators w.r.t. τ as

POτ = {op|op associated with some c ∈ PCτ}.

The complete Why-Not answer includes an explanation for the pruning of each
cc-tuple τ∈CCT (Ttc , I) and takes the form of a polynomial of query operators.

Definition 2.2. (Why-Not answer w.r.t. tc) Given query Q over a database schema SQ,

the instance I over SQ, and the compatibility tableau Ttc associated with the Why-Not

question tc, we define the Why-Not answer w.r.t. tc as
∑

τ∈CCT (Ttc ,I)

∏

op∈POτ

op.

We justify modeling each POτ with a product by the fact that in order for τ to
‘survive’ up to the query result, every single picky operator w.r.t. τ must be ‘repaired’.
The sum of the products of each τ ∈ CCT (Ttc , I) stems from the fact that, if any
addend is ‘correctly repaired’, the associated τ will return the missing answer.

Example 2.7. In Ex. 2.6 we found that {op2, op4, op5} are the picky operators for τ1,

which results in the addend op2 ∗ op4 ∗ op5. Applying the same for all 12 cc-tuples in

our example, we obtain the final result op2 ∗ op4 ∗ op5 +3 ∗ op2 ∗ op5 +3 ∗ op2 ∗ op3 ∗
op4 ∗ op5 + op2 ∗ op3 + 2 ∗ op2 ∗ op4 + 2 ∗ op2 ∗ op3 ∗ op5.

3 The Ted Algorithm

Alg. 1 presents the Ted algorithm that computes the Why-Not answer defined in Sec. 2
for a conjunctive query Q. Ted trivially extends to unions of conjunctive queries and a
Why-Not question in form of a disjunction of c-tuples (see Sec. 2.1), however, details
are omitted due to space constraints.

Ted starts by a preprocessing phase, that consists in creating the tableau skeleton
TSQ

and the tableau Ttc (lines 2 and 3). Then, it determines the set of cc-tuples
CCT (Ttc , I) in line 5 before it computes the Why-Not answer (lines 6 – 8). As the
computation of the Why-Not answer directly follows from the definitions of Sec. 2.3,
we focus our discussion computing CCT (Ttc , I).

To compute the set of all cc-tuples, we could form the cross product of all relations
of Ttc (e.g., R × T × S) and then verify whether each resulting concatenated tuple
(IdRIdSIdT ) satisfies the condition tc.cond. However, this will result in checking the
same conditions numerous times, e.g., the condition x7 ≤ 9 will not be checked once
for every tuple in relation S, but as many times as there are tuples in the cross product.
To improve efficiency, we divide the problem into independent subproblems based on
a partitioning of the rows in Ttc .
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Algorithm 1: Ted algorithm

Input: SQ, Q, I, tc
Output: Answer, the polynomial built of the picky operators

1 Polynomial Answer = 0 ;
2 Initialize tableau skeleton TSQ

;
3 Tableau Ttc ← createTtc(TSQ

, hvar(tc)(tc)) ;
4 Set Part←partitioning( Ttc );
5 Set CCT = CompatibleFinder(Part, I);
6 for (τ : cc-tuple in CCT ) do

7 POτ = 1; initialization of the product of picky operators for τ
8 for (x:variable in TSQ

) do

9 cτ ← single atomic condition on x imposed by τ ;
10 CQ ← conditions on x imposed by Q;
11 for (c: atomic condition in CQ) do

12 c′τ ← true;
13 if c is a complex condition then

14 x′ ← variable compared to x in cτ ;
15 c′τ ← single atomic condition on x′ imposed by τ ;

16 if cτ ∧ c′τ ∧ c then

17 POτ ← POτ ∗ getOperatorForCond(c);

18 Answer ← Answer + Polτ ;

19 return Answer;

Definition 3.1. (Valid partitioning of Ttc ). Assume a partitioning of TSQ

into k partitions Part1, . . . , Partk. This partitioning is valid for Ttc if each

Parti is minimal w.r.t. the property: ∀R∈TSQ
, if R∈Parti and R′∈TSQ

s.t.

var(R.cond)∩var(R′.cond) 6=∅ then R′∈Parti. Each Parti generates a compati-

bility tableau (Si, Parti, condi), where Si is the restriction of Stc and condi the

restriction of cond over Parti.

Example 3.1. Tab. 3 shows the two partitions of the valid partitioning that we obtain

in our running example.

It is easy to prove that the valid partitioning of Ttc is unique and that the following
lemma holds.

Lemma 3.1. Let Part={Part1, . . . , Partk} be the valid parti-

tioning of Ttc and I be a well-typed database instance. Then,

CCT (Ttc , I)= ×
Parti∈Part

CCT (TParti , I|Parti).

Using the above lemma, Ted first determines the set of concatenated tuples for each
partition and then forms the cross product of the tuples of each partition in order to
obtain CCT (Ttc , I).

Complexity analysis. The three main phases of Ted are the partitioning phase, the
computation of concatenated compatible tuples, and the computation of the Why-Not
answer. The respective worst case complexities add up to O(|SQ| +

∏

R∈SQ
|I|R| +

∏

R∈SQ
(|I|R|) ∗ |SQ| ∗ |Q|). Assuming that the number of tuples |I|R| of a relation R

8



Use case Ted NedExplain Why-Not

Crime7 952op9op8 + 8op9 + 56136op7op9op8 + 792op7op9 op8, op9 op7
Imdb2 8op3op1 op3
Gov2 17400op3 + 12op1 + 19952op3op1 op1 op3

Table 5: Ted, NedExplain and Why-Not results

is typically much larger than the size of the schema or query (i.e., |I|R| >> |SQ| and
|I|R| >> |Q|), this simplifies to O(

∏

R∈SQ
|I|R|) or O(Nk), where k is the number

of relations and N the maximum size of a relation instance.

Implementation and evaluation. We implemented Ted in Java 1.6 and ran it over
several benchmark queries we defined over three different datasets (the same as in [2]).
Due to space constraints and the obvious efficiency issue entailed by Ted’s complexity,
we only very briefly show one case for each dataset.

Tab. 5 reports Ted’s Why-Not answer polynomial and the picky operators identified
by NedExplain [2] and Why-Not [3]. These use cases clearly demonstrate that Ted

returns complete Why-Not answer as opposed to NedExplain and Why-Not, that both
in general return subsets of the operators referred to in the polynomial Ted returns. This
comes at no surprise, as NedExplain and Why-Not base their procedures on a specific
query plan in which they trace compatible data until up to the point (query operator)
where they disappear. Being query plan independent, Ted produces the complete set
of picky operators for all reordered query plans.

Concentrating on the Why-Not answer polynomials, we see that they bear more
information than what previous algorithms return. Indeed, they not only tell us why tc
is missing, but also all the different ways it was pruned from the result. For example,
in Crime7, we conclude that the majority of cc-tuples do not satisfy the conditions of
the op7, op9, and op8, but we also see 9 cc-tuples that are only pruned by op9. This
information is interesting for subsequent processing (manual or automatic), e.g., we
can deduce that the least “invasive” repair of the query touches op9.

4 Outlook and Future Work

Ted is an algorithm that returns query based-explanations for a Why-Not question over
a conjunctive query. Opposed to previous work, it is the first algorithm that is guar-
anteed to return the same explanations, no matter the considered query plan represen-
tation. Another novelty is to represent the Why-Not answer as a polynomial. This
polynomial has the benefit of being an elegant formalism that can subsequently be
used for further processing, e.g., for ranking the importance of “misbehaving” query
operators in the query, for actually computing query rewritings that automatically fix
the problem, estimating the minimum number of side-effects of a rewriting, etc. These
are interesting problems we plan to address in the future. However, before develop-
ing solutions to these interesting problems, we will tackle the problem of efficiency.
Besides parallel computations, we may for instance reduce the overall complexity by
only selecting a “representative” sample of cc-tuples and compute an approximate re-
sult (within certain error bounds).
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