P. O. Larsen and M. Von-ins, The rate of growth in scientific publication and the decline in coverage provided by Science Citation Index, Scientometrics, vol.56, issue.2, pp.575-603, 2010.
DOI : 10.1007/s11192-010-0202-z

M. Kuramochi and G. Karypis, Frequent subgraph discovery, Proceedings 2001 IEEE International Conference on Data Mining, pp.313-320, 2001.
DOI : 10.1109/ICDM.2001.989534

R. Agrawal and R. Srikant, Fast algorithms for mining association rules in large databases, Proceedings of the 20th International Conference on Very Large Data Bases. VLDB '94, pp.487-499, 1994.

A. Inokuchi, T. Washio, and H. Motoda, An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data, Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery. PKDD '00, pp.13-23, 2000.
DOI : 10.1007/3-540-45372-5_2

J. Huan, W. Wang, and J. Prins, Efficient mining of frequent subgraphs in the presence of isomorphism, Third IEEE International Conference on Data Mining, p.549, 2003.
DOI : 10.1109/ICDM.2003.1250974

X. Yan and J. Han, gspan: Graph-based substructure pattern mining, Proceedings of the 2002 IEEE International Conference on Data Mining. ICDM '02, p.721, 2002.

X. Yan and J. Han, CloseGraph, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.286-295, 2003.
DOI : 10.1145/956750.956784

S. Nijssen and J. N. Kok, The Gaston Tool for Frequent Subgraph Mining, Electronic Notes in Theoretical Computer Science, vol.127, issue.1, pp.77-87, 2005.
DOI : 10.1016/j.entcs.2004.12.039

R. C. Bunescu and R. J. Mooney, A shortest path dependency kernel for relation extraction, Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing , HLT '05, pp.724-731, 2005.
DOI : 10.3115/1220575.1220666

A. R. Aronson, Effective mapping of biomedical text to the umls metathesaurus: the metamap program, Proc AMIA Symp, pp.17-21, 2001.

M. C. De-marneffe and C. D. Manning, The Stanford typed dependencies representation, Coling 2008: Proceedings of the workshop on Cross-Framework and Cross-Domain Parser Evaluation, CrossParser '08, pp.1-8, 2008.
DOI : 10.3115/1608858.1608859

?. Sari´csari´c, J. Jensen, L. J. Ouzounova, R. Rojas, I. Bork et al., Extraction of regulatory gene/protein networks from Medline, Bioinformatics, vol.22, issue.6, pp.645-650, 2006.
DOI : 10.1093/bioinformatics/bti597

C. Friedman, P. Kra, H. Yu, M. Krauthammer, and A. Rzhetsky, GENIES: a natural-language processing system for the extraction of molecular pathways from journal articles, Bioinformatics, vol.17, issue.Suppl 1, pp.74-82, 2001.
DOI : 10.1093/bioinformatics/17.suppl_1.S74

S. Blohm, K. Buza, P. Cimiano, and L. Schmidt-thieme, Applied Semantic Web Technologies In: Relation Extraction for the Semantic Web with Taxonomic Sequential Patterns, pp.185-209, 2011.

S. Quiniou, P. Cellier, T. Charnois, and D. Legallois, What about Sequential Data Mining Techniques to Identify Linguistic Patterns for Stylistics?, Lecture Notes in Computer Science, vol.7181, issue.1, pp.166-177, 2012.
DOI : 10.1007/978-3-642-28604-9_14

URL : https://hal.archives-ouvertes.fr/hal-00675578

N. Béchet, P. Cellier, T. Charnois, B. Crémilleux, and M. C. Jaulent, Sequential pattern mining to discover relations between genes and rare diseases, 2012 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS), pp.1-6, 2012.
DOI : 10.1109/CBMS.2012.6266367

B. Galitsky, Machine learning of syntactic parse trees for search and classification of text, Engineering Applications of Artificial Intelligence, vol.26, issue.3, pp.1072-1091, 2013.
DOI : 10.1016/j.engappai.2012.09.017

M. Zhang, G. Zhou, and A. Aw, Exploring syntactic structured features over parse trees for relation extraction using kernel methods, Information Processing & Management, vol.44, issue.2, pp.687-701, 2008.
DOI : 10.1016/j.ipm.2007.07.013

D. Zelenko, C. Aone, and A. Richardella, Kernel methods for relation extraction, Proceedings of the ACL-02 conference on Empirical methods in natural language processing , EMNLP '02, pp.1083-1106, 2003.
DOI : 10.3115/1118693.1118703

A. Culotta and J. Sorensen, Dependency tree kernels for relation extraction, Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics , ACL '04, 2004.
DOI : 10.3115/1218955.1219009

K. Fundel, R. Küffner, and R. Zimmer, RelEx--Relation extraction using dependency parse trees, Bioinformatics, vol.23, issue.3, pp.365-371, 2007.
DOI : 10.1093/bioinformatics/btl616

A. Coulet, N. H. Shah, Y. Garten, M. A. Musen, and R. B. Altman, Using text to build semantic networks for pharmacogenomics, Journal of Biomedical Informatics, vol.43, issue.6, pp.1009-1019, 2010.
DOI : 10.1016/j.jbi.2010.08.005

URL : https://hal.archives-ouvertes.fr/inria-00549695

M. F. Chowdhury and A. Lavelli, Combining tree structures, flat features and patterns for biomedical relation extraction, In: EACL, pp.420-429, 2012.

P. Adolphs, F. Xu, H. Li, and H. Uszkoreit, Dependency Graphs as a Generic Interface between Parsers and Relation Extraction Rule Learning, Proceedings of the 34th Annual German Conference on Advances in Artificial Intelligence. KI'11, pp.50-62, 2011.
DOI : 10.1007/978-3-642-24455-1_5