Exact computation of the Maximum Entropy Potential of spiking neural networksmodels

Rodrigo Cofre 1 Bruno Cessac 2, 1
1 NEUROMATHCOMP - Mathematical and Computational Neuroscience
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR6621
Abstract : Understanding how stimuli and synaptic connectivity in uence the statistics of spike patterns inneural networks is a central question in computational neuroscience. Maximum Entropy approachhas been successfully used to characterize the statistical response of simultaneously recorded spikingneurons responding to stimuli. But, in spite of good performance in terms of prediction, the ttingparameters do not explain the underlying mechanistic causes of the observed correlations. On theother hand, mathematical models of spiking neurons (neuro-mimetic models) provide a probabilisticmapping between stimulus, network architecture and spike patterns in terms of conditional proba-bilities. In this paper we build an exact analytical mapping between neuro-mimetic and MaximumEntropy models.
Type de document :
Article dans une revue
Physical Reviev E, 2014, 89 (052117), pp.13
Liste complète des métadonnées

Contributeur : Bruno Cessac <>
Soumis le : lundi 15 décembre 2014 - 20:31:58
Dernière modification le : jeudi 3 mai 2018 - 13:32:58


  • HAL Id : hal-01095599, version 1


Rodrigo Cofre, Bruno Cessac. Exact computation of the Maximum Entropy Potential of spiking neural networksmodels. Physical Reviev E, 2014, 89 (052117), pp.13. 〈hal-01095599〉



Consultations de la notice