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Minimal time problem for a fed-batch bioreactor with a non admissible
singular arc

Terence BayeWw and Francis Mairétand Marc Mazade

Abstract—In this paper, we consider an optimal control several advantages from a practical point of view (see e.qg.
problem for a system describing a fed-batch bioreactor with 1], [2], [7], [8], [9], [11]).
one species and one substrate. Our aim is to find an optimal Whenever the growth function is of Monod type, then
feedback control in order to steer the system to a given targen . - . ’
minimal time. The growth function is of Haldane type implying one Can_ prove that the optimal fegdlng S”ateQY IS ban_g-bang
the existence of a singular arc. Unlike many studies on the [11]. This means that the reactor is filled until its maximum
minimal time problem governed by an affine system w.rt. the volume with the maximum input flow rate. Then, micro-
control with one input, we assume that the singular arc is organisms consume the substrate until reaching a reference
non-necessary controllable. This brings interesting is®s in y51ye. In the case where the growth function is of Haldane

terms of optimal synthesis. Thanks to the Pontryagin Maximun . S . .
Principle, we provide the optimal synthesis of the problem, type (in case of substrate inhibition), this strategy is oti-

It turns out that singular extremal trajectories are no longer ~ Mal. In fact, one can prove (see [11]) that the optimal sgrate
optimal on a subset of the singular arc. is singular. It consists in reaching a substrate concentration

(corresponding to the maximum of the growth rate function)
. INTRODUCTION in minimal time. Then, the substrate concentration is kept
The study of the minimal time control problem for affineconstant to this value until reaching the maximal volume.
systems with one input: This can be proved by using either the Pontryagin Maximum
. n Principle (PMP) or the clock form [5], [10].
= f@) +uglx), xR Jul<1, (1) In the present work, we are interested in studying the opti-
has been investigated a lot in the literature, see [6] fonal synthesis for Haldane-type growth function whenever th
n = 2 and references herein. One often encounters singuigingular arc is no longer admissible from a certain volume
trajectories which appear when the switching function ef thvalue. This happens when the singular control is larger than
system is vanishing on a sub-interval. In order to find andssuhe maximal input flow rate which is allowed in the system.
to an optimal control problem governed by (1), studies oftelt follows that there exists a volume value above which
require that the singular arc is controllable which meaas$ thsingular extremal trajectories are no longer optimal. Véasr
the singular control:, allowing the trajectory to stay on the in [11], [2], [1], we suppose that the maximal volume value
singular arc is supposed to verify the inequality: can be reached by the singular arc, there exists a volume
value above which it is not possible to keep the substrate
Jus| < 1. concentration equal t@ in the system. The main issue of
However, one cannot in general show that this assumptidi€ Paper is the following. We aim at determining an optimal
holds. In fact, if the singular arc is of first order, the expre feéeédback control whenever the the singular arc becomes non
sion of the singular contral, is in general complicated as it 2dmissible (i.e. the singular control saturates one ofuee t

depends both on the state and the adjoint state. The olgjectRPunds on the control).
of this work is to study a minimal time control problem in _First, one cannot apply the clock form [5] (that allows a
the plane, that is: = 2 where the singular control is not diréct comparison between the cost of two trajectories) as

always admissible i.e. (2) is not always satisfied. we do not have a natural candidate for optimality in this
We consider a fed-batch bioreactor with one species af@Se- In particular, optimal strategies developed in [2], [
one substrate. Our aim is to find an optimal feedback contr8f€ N0 longer admissible. Thanks to Pontryagin’s pringiple
that steers the system in minimal time to a given targe¥€ show that the optimal synthesis of the problem is rather
where the substrate concentration is less than a prescrigdfferent as in [11]. We introduce solutions of the system
value, see [11]. Finding an optimal feeding strategy cahBackward in time with the maximum control that allow

significantly increase the performance of the system and his determine where the switching time occurs for optimal
trajectories. Our main result is that a singular extremal
!Universite Montpellier 2, Case courrier 051, 34095 Moiiipe trajectory stops to be optimal before reaching the maximal

(rﬁrd:;ade%dmt prance. éobnatypeznggat h.univ-montp2.fr,  admissible value (this is rather non-intuitive and is sigh
2INRA-INRIA 'MODEMIC' team, INRIA Sophia-Antipolis  different as the controllable case). We show that theret®xis

Méditerranée, UMR INRA-SupAgro 729 'MISTEA 2 place Vil a maximal volume value above which a singular trajectory is

34060 Montpeliier. o not optimal. We also provide numerical switching curves for
3 Inria 'BIOCORE’ team, Sophia-Antipolis, 2004 route . . .

des  Lucioles, 06902 Sophia  Antipolis  Cedex, Franceth€ control which allow to determine an optimal feedback

francis.mairet@nria.fr control of the problem.



The paper is organized as follows. The first section statesd system (3) can be put into a two-dimensional system:

the optimal control problem. We also recall the optimalit )
g b e { = () (X 4 510 — 8) + E(sin — 5),

V= u,

result of [11] and we apply the PMP. The second section
is devoted to the optimal synthesis of the problem when
the singular is not admissible everywhere. We first descri

)

t@n can easily show that the 56t s;,,] x R is invariant by

. . . - m@). Notice that if we define: by (8), the micro-organisms
and that allow to determine properties of optimal trajee®r . o (tration may not be positive. This may happen when
Then, we state our main results in the case where the singulgf \\hich means that initial conditions of micro-

arc is never controllable (Proposition 2) and whenever %rganisms and substrate are low. Therefore, we consider
is controllable until a certain volume (Proposition 3). The o1 conditions for (9) in the domaifP defined by:
last section is devoted to numerical simulations. We exhibi '

a numerical switching curve for the study that allows to ,._ (5,0) € [0, sin] % (0,0,] | M ts — 8> 0}
2 y Ym v m .

provide an optimal feedback control of the problem. (10)

Il. GENERAL RESULTS In the rest of the paper, we writg(-) a control in open loop

In this section, we state the optimal control problem, wandu[-] a feedback control depending on the statey).
make_ areview O.f the standard optimality result in [11] whe%_ Optimal synthesis when the singular arc is admissible
the singular arc is controllable, and we apply the Pontryagi . i i )
Maximum Principle (see [12]) that will be used in the next N this part, we review the result of [11] on optimal trajec-

section. tories for problem (6) that will allow to introduce the prein
without supposing that the singular arc is admissible.
A. Statement of the problem Next, we say that the growth functiop is of Monod

We consider a system describing a fed-batch bioreacttype if y(s) = 4% with z > 0 andk > 0.
with one species and one substrate:

i=a(u(s) - 1), Theorem 1:Assume thatu is of Monod type Then, the
" optimal feedback control,; steering any initial condition

§ = — 0 u in — S), 3 H i
f pls)z + (s 5) 3) in D to the target] is:
U = u,
. . . 1 if v < vy,
wherez represents the concentration of micro-organisms, ups,v] = . (11)
the concentration of substrate, ands the volume of the 0 if v=0vm.

tank. The input substrate concentration is denoted;Ry> ] ] ) )
0, andu is the input flow rate in the system. For conveniencd! Other words, the optimal strategy il and wait, and it

we have taken yield coefficient equal to one (by rescaling tHe?nsists in filling the tank with maximum input flow rate
equation). The functios — yu(s) is the growth function Untl v = v, and then we lew = 0 until s reaches the
of Monod or Haldane type (see [13]). In the following, weV&lUuesrs (if necessary).

consider that: takes values within the set: In the rest of the paper, we will consider only the case
where the growth functiop is of Haldane typd.e.
U :={u:[0,+0) = [0, Umaqe] | u meas.}. 4) is
Here u,,q, denotes the maximum input flow rate in the His) = gs2+s+k’

system. In the following, we can tak(_a by time scalingy i>0,g>0, andk > 0. In this caseyu has exactly
Umaz = 1. The target we consider is defined by: one maximum oveR_ , that we denotes, and we suppose
T =R% % [0, 8ef] X {vm} (5) thats > s..; (which means that the reference concentration
to achieve is sufficiently small). The optimal synthesis in

Foru € U, lettg,(u) the time to steer (3) from an initial 5’ case is rather different as for Monod growth function.

condition &y := (xo, s0,v0) € R% x [0, si] % [0,vp,]. The

optimal control problem becomes: .
P P Theorem 2:Assume thatu is of Haldane type and that

Inf e (u), s.t. §(t(u) €T, (6) the following assumption holds:
wheref(-) denotes the unique solution of (3) for the control 1(3) [ + vm] <1 (12)
u that starts at,. One essential feature in the system (3) is Sin — 8 N
that the quantity Then, the optimal feedback contre}; to reach the target is
M :=v(x+s— sin), (7) 9ven by

is conserved along any trajectory of (3), herdds constant 0 ifv=uv, or 5>,
and equal tayy (z¢ + so — sin ). From (7), we obtain: upls,v] = 1 ifs<s and v <,

M us(v) ifs=35 and v <y,

&=+ Sin — 5, (8) (13)



where We obtain from (17) that any extremal control satisfies the

s (0) == pu(3) { M_ 4 U] . (14) following control law: for a.et € [0,ty], we have
e P(t) <0 = u(t) =0 (No feeding),
Pt) >0 = u(t)=1 (Maximal feeding),

This result can be proved via the clock form, see e.g. [11].
This tool is based on Green’s Theorem and allows a direct (#(t) =0 == u(t) € [0, 1].
comparison of the cost between two trajectories steering §je say thatt, is a switching pointif the control  is
initial point to the same target point. non-constant in any neighborhood &f which implies that
Here we have emphasized the assumption (12) ensuriggt,) = 0. In this case, the control isang-bangaroundt,,
the system to stay on the singular arc (see e.qg. [7], [1]). Thiat is« switches either frond) to 1 or from 1 to 0 at time
controlu, is singular(see section II-C). It allows to maintain ¢,. Whenevers is zero on a non-trivial interval C [0, ],
the substrate concentration equal 201t can be written we say that: is a singular contro] and that the trajectory
us(v) = v(’;(g)fg) so thatu, > 0. Therefore, assumption contains aingular arc The sign ofj is fundamental in order
(12) is essential to ensure that(v) satisfies the upper bound to obtain the optimal synthesis. By taking the derivative of
us(v) < 1 for all v < vyy,. ¢, we get:
The objective of this paper is to provide an optimal b= Ast(sin — 5)1'(5) (19)
synthesis of the problem whenever (12) is non-necessarily v
satisfied. Note that in practice, one should start the fadkba Moreover, we can show that, < 0 (see e.g. [7], [1]). This
with a high biomass concentration (i.e. high) in order to implies that any extremal trajectory satisfies the property
speed up the process, so that condition (12) can no longer
be satisfied.

s(t) >3 = ¢(t) >0; s(t) <3 = ¢(t) < 0.

Now, if an extremal trajectory contains a singular arc on

C. Pontryagin maximum principle some time intervall := [t1,t2], then we havep = ¢ = 0
i ) i . on I, hence we have/(s) = 0 ands = 5 on I. Therefore,
In this part we apply Pontryagin maximum principle ony,, sqiying 5 = 0, we obtain easily the expression of the

(6). Let H = H(s,.v,/\s,)\v,)\o,u) the Hamiltonian of the singular control given by (14), see e.g. [2].
system defined by: Moreover, we can estimate the time of a singular trajectory
as follows (see e.g. [1]):

M
H = =Aspuls) { v (s Sm)] 1 M + v(t2)[sin — 3]
to — 1] = — In = ’ (20)
As(8in — 8) 1(3) M + v(t1)[Sin — 3
——= F+ X + o (15)
v IIl. OPTIMAL SYNTHESIS WITHOUT CONTROLLABILITY
ASSUMPTION

In this part, we provide a description of optimal trajecto-
ries for problem (6) when (12) is not satisfied. To this end,
we introduce solutions of the system backward in time that
will allow us to describe where optimal trajectories have a
switching point.

+u

If w is an optimal control ands,v) the corresponding
solution of (9), there exists > 0, Ao < 0, and an absolutely
continuous map\ = (A\s,\,) : [0,t;]] — R? such that
Mos A) £ 0, Ay = =2 X, = — 9 that is:

As = X (W (s)2 — p(s) +4), 16
Ao = A, (FH ). (16) " A. study of the domaif»
In view of (12), we introduce a mapping: (0, s;,) — R
and we have the maximality condition: by
(5) o= — — —2 (21)
u(t) € argmaxwe[oyl]H(s(t), v(t), As(t), Au(t), Ao, w), sy w(s)  Sip— s
) (17) By definition of , we have:
for almost everyt € [0,ty]. We call extremal trajectory
a sextuplet(s(-), v(-), As (), Ao (), Ao, u(-)) satisfying (9)- us(v) =1 < v=n(s).

(16)-(17), andextremal controlthe controlu associated to

this extremal trajectory. As; is free, the Hamiltonian is zero
along an extremal trajectory. Following [1], one can prov
that \; is always non-zero (it is therefore of constant sign

from the adjoint equation), and thay < 0 (hence we take V" < Uy (22)
Ao = —1 in the following). Next, let us define thewitching
function ¢ associated to the contral by:

Now, we set* := 7(3) so that the singular arc is controllable
rovided thatv* > wv,,. Therefore, we assume throughout
his section that* satisfies:

It follows that the singular arc is controllable only progl
that the volume is less thart. Indeed, forv > v* equality
As(Sin — 8) (14) no longer defines an admissible controfn1]. Next,
——— + A\ (18)  we will consider the two following cases:

0=

v



o Case 1w* <0,
o Case 20 < v* < vy,.

see Fig. 2.

) ] B. Optimal synthesis when the singular arc is never admis-
Remark 1:Case 1 means that the singular arc is nevegjp|e

controllable over0, v,,]. As the function, can take negative
values,v* can be negative.

We now define the curv€ (resp.C) whose graph is the
mappingv € (0, v,,] — 4(v) (resp.v € (0, vy] — F(v))
as follows. The mapping (resp.¥) is the unique solution
of the equation:
ds M Sin — S
=) [ A b o] 222

which passes through the poif#, v,,) (resp. (5,v*)). In

In the case where* < 0 (case 1), we have the following
optimality result (see also Fig. 2).

Proposition 2: Assume that* < 0. Then, optimal con-
trols satisfy the following:
o If sg <3, then, there existg, > 0 such thatu = 1 on
[0,t0], w = 0 on [to, t¢] Wheret is such thatw(ty) =
U, @NA s(tf) = Spey-
e If 5 < 50 < A(vo), then, there exists; > 0 such
thatu = 0 on [0,t0], w = 1 on [to,¢1], v = 0 on

(23)

other words;y(v) and~(v) are solution of (9) backward in
time with a constant contral = 1. These curves will play a
major role in our optimal synthesis contrary to the case wher e
the singular arc is controllable (see Figure 2 and Table | for
parameter values). In fact, they will indicate sub-domains
where optimal trajectories have a switching point.

[t1,tf] wherety > 0, 5 < s(tg) < so, v(t1) = v, and
S(tf) = Sref-

If so > 4(vo), then, there exists > 0 such thatu = 0
on [0, o], w =1 on [to,t1], w =0 on [t1,tf] with ¢, >
0,5 < s(to) < A(vo), v(t1) = vm, ands(ty) = syey.
Proof: We omit the proof that can be found in [3m

Let o (resp.) the first volume value such that(d) ¢ Remark 3:1n the second case of proposition 2, the switch-
(0,5im) (resp.¥(v) ¢ (0,si,)). The next proposition is ing timet, from u = 0 to u = 1 may be zero and it can be
concerned with monotonicity properties $fand~. found numerically, see section IV.

Proposition 1: (i) The curve# is either decreasing on
[0, vy, either there exists a unique € (0,v,,) such that Next, we consider the second case where: v* < vp,.
A(v1) € (0,s4,) and %(vl) = 0. Moreover, in the latter It is easy to see that for initial conditions such thgt >
case/y is increasing ond, v;] and is decreasing dm,,v,,].  v*, optimal controls are given by proposition 2 (indeed, the
(i) The mappingy is increasing on(v,v*] and decreasing singular arc is defined only far, < v*). Therefore, we only
on [v*,v,,] and Z—Z(v*) =0. deal withvy < v*. The next Proposition is illustrated on Fig.

Proof: We omit the proof that can be found in [3m 2.
Remark 2: The previous proposition implies that the Proposition 3: Assume that, < v* and that there exists

backward curveC leaves the domairD through the line- 0 < v. < v* such thatj(v.) = 5. Then, optimal controls

segment{0} x [0, s;,] wherea<’ leaves the domai either
through the line-segmerd0} x [0, s;,] or through the line-  «
segment{s;, } x [0, s;,], see Figure 1.

Vm

s .

4 6
Substrate .

Fig. 1. The curve leaves the domain througi®} x [0, s;,,] whenM = 1,
and through{s;» } x [0, s;] when M = 25.

In the second case of Proposition 1 (i), we can show that
there exists values d¥/ such that there exists a unique €
(0,v*) such that:

Y(vi) =5, (24)

satisfy the following:

If so < 4(vo), then, there existg, > 0 such that we
haveu =1 on [0, to], u = 0 on [to, t ] wheret, is such
thatv(tog) = vm.
If (vo) < so < A(vp) and sy < 3, then, there exists
to > 0 such that we have: = 1 on [0,%], u = us
on [to,t1], w = 1 on [t1, 2], w = 0 on [tg,ts], where
S(to) =35,t —tyg >0, U(tl) < v*, andv(tg) = Uy -
If 4(vo) < sp <3, then, there existd < ¢y < t1 < to
such that we have = 1 on [0,ty], u = us 0N [to, t1],
u =1 0n [t,t2], u = 0 on [ta,tf] Wheres(ty) =5,
v(t1) € (Vs v*), v(t2) = V.
If so > 5 andvg < wv,, then, there existd < tg <
t1 < ty such that we haves = 0 on [0,¢0], u = us
on [to,t1], w = 1 on [t1,t2], w = 0 on [ta, ty] where
s(to) =3, v(t1) € (vi,v*), ando(ta) = vp,.
If sp >3, andvgy > vy, then, the optimal control is one
of the following types:

- eitheru = 0 on [0, %], u = us ON [tg,t1], u =1

on [ty,t2], u = 0 on [ty, t¢] wheres(ty) =5 and
0< to < tq, ’U(tg) = U

- eitheru =0 on [0, tg], w =1 on [tg, 1], u =0 on
[t1,t¢] Wherety > 0,5 < s(to) < H(vo), v(t1) =
U -

Proof: The proof that can be found in [3]. [ |



TABLE |
PARAMETER VALUES (ARBITRARY UNITS) OF SIMULATIONS FOR THE
OPTIMAL SYNTHESIS(SEEFIG. 2 AND 3)

\ Um Sin Sref M n k g

,UTTL
N
5N

FR

M+vo(sin—S3
ln ( JVI+1)ZES,;,1—§§ )

L 7 10 01 25(casel) 05 1 0.11
\ 1 (case 2)
\
\ _ _
ta(vo) Of this strategy is (recall (20), see also [1]):
~N
~

ta(vo) = - + Vm — Vo
st (vo)
S d
0 T T T T T T T T T T T T T T T T T T +/ ? I (25)
0 2 4 6 8§ 10 12 14 16 18 20 Sref M(J) (M + 8y — J)
Substrate Vm
wheres'(v) is the substrate concentration when the trajec-
tory reache® = v,,. We now show that admits a minimum
1Vm vg € [vs, v*] that we will characterize hereafter. First, notice
! ] N \\ Y N that sf(v) is obtained after integrating the ODE:
61 ~N ds M Sin — 8
_ - ~ B _ ) [_ T s — s] +ETE () = 5. (26)
5 N dv v v
2 a AN \ Moreover, (26) can be equivalently written %g, =g(v,s)
3 {o* ) where g is the right hand-side of (26). By the classical
>

dependence of the solution of an ODE on parameters, we
denote by s(v,s,v0) the unique solution of (26). It is

] __ = -~ standard thaty € R% — s(v,3,v0) is of classC* for
1_W - all v > 0. It follows by composition thaty — ¢, (vo) is of
- — 5 classC! on [v,,v*]. Consequently, it admits a minimum on
0 g T L AR this interval. By differentiatings(v, 5, vg) W.r.t. vy, we get:
Substrate 0s (0,5, v0) = _g(vo’g)eﬁfo g—g(s(u1,1)o,§)7U))du;’

vy

Fig. 2. Optimal trajectories (in solid red lines) for varsinitial conditions dst __ 0Os = ;
Top: case 1«* < 0), see Proposition 2 for the optimal synthesis; bottom:hencpf dug (UO) ~ Ovo (vm, 55 UO)' We have l_Jsed a CIaSSIIC.a.I
case 2 < v* < vm), see Proposition 3. In blue dashed lines, trajectoried©SuUl in ODE on the dependance of the trajectory w.r.t.dhiti
€ and C which pass through{s, v*) and (5,um). In green, the mapping conditions.
vo — sp(vo) (see Section V). Now, we know from the PMP that, = v* and vy =
v, are not admissible (see also Proposition 3), hengce
. i .. hecessarily satisfiegi—“(va) = 0. So, if we putf(vy) :=
Remark 4:For the last item of the previous Proposition, (v, a4 _ o . . L
) ) oo L, 5% (w, s(w,3,v0))dw, we obtain by taking the derivative
the optimal trajectory is eitheBy, — SA — B; — By or By — vo _0Os .
of (25) w.r.t. vg:
By — By where B, (resp.B;) denotes an arc Bang = 0

(resp.uw = 1), and S A denotes a singular arc. dt, v* — 1 ) M(E)(% + Sin — 35) 0(v0)
The next section will clarify this remark from a numerical dvo w) = Siff_g + o u(sT)(% + Sin — 8 ‘
point of view, and will provide an estimation of the switchin ’ (27)
time t, for items 2, 3, and 4 of Proposition 3. This equation allows to obtain numerically the volume
ve € (v«,v*) above which extremal trajectories stop to be
IV. NUMERICAL SIMULATIONS singular. As an example, we fing, ~ 1.67 (see Fig. 3 and

A. Determination of the maximal optimal volume Table [ for the values of the parameters).

We will focus on the second casé € v* < v,,). Our
aim in this part is to determine the optimal volume, denoteB- Determination of the switching curve
v,, above which it is not optimal to stay on the singular arc, Now, we determine the optimal switching time for the
as follows. trajectoriesBy B By starting withsy > s.
For vy € [v.,v*], consider the strategy = u, from v, For eachuvy € (v, v,,), we search numerically,(vy) €
to vo, u = 1 until v,, and thenu = 0 until s,.¢. The time |5, ¥(vo)] which minimizes the time;(s;) to reach the target



starting from(9(vg), vg) with the strategyu = 0 until s,
u =1 until v,,, u = 0 until s,..r. ASsuming that for each

arc. This situation can arise for example when the initial
biomass concentration is high. Thanks to Pontryagin Maxi-

there is a unique minimum, this allows us to define the curveaum Principle and a careful study of the switching function,
C, whose graph is the mapping — s,(vo), represented in we have obtained a characterization of optimal trajectorie

green on Fig. 2. We find that fap < v,, we haves,(vy) =

of the problem. Our main result is that it is not optimal

3, while s,(vo) > 5 for vg € (vq,vm). This result allows to for a trajectory to stay as long as possible on the singular
conclude numerically which structure is optimal whenevearc. Moreover, we have obtained switching curves that can

sp > s andwvg > v, (see the last case of Proposition 3):
o if v9 < wv,, the optimal strategy is = 0 on [0, ¢],
uw = ug ON [to,t1], w =1 0ON [t1,t2], u = 0 on [ta, tf]
wheres(tg) =3, v(t1) = va, v(t2) = U
o if v9 > v,, the optimal strategy i& = 0 on [0, ¢o],
u = 1 on [to,t1], u = 0 on [t1,ts] wheret, > 0,
s(to) = min(s(0), sp(vo)), v(t1) = Vy.

be used to determine an optimal feedback control of the
problem. A more detailed insight into the determination

of these switching curves (for instance using the theory
of conjugate points [4]) will deserve more investigation.

The analysis of the problem when the singular arc is non-
admissible everywhere is more delicate as in the standard
case. We believe that this kind of study can be also the

To conclude, based on the optimal synthesis (Propositigiiarting point to study optimal control problems in a more
3) and the computations of the mapping— s,(vo) and general setting in presence of non-controllable singuies.a

vq, Optimal trajectories for various initial conditiorisy, vo)

The implementation of the optimal strategy will also

are represented on Fig. 2. We have shown that the optin@gserve future works. Given that model parameters are gen-
synthesis is quite different as the one of Theorem 2. larally poorly known, and that all the state variables cannot
particular, we have pointed out that it is not optimal for & measured, it will be a key challenge to determine on-line
trajectory to stay as long as possible on the singular arthe switching points.

Moreover, the curvey, — s,(vg) is the switching curve
for optimal trajectories and it will allow to give an optimal

feedback control.
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Proposition 4: The optimal feedback steering any initial

state inD to the target is given by:

0if v = v,

0if s> sp(v), v> vg,

1if s <sp(v), vm > v > v,

’LLQ[S,’U] = . _
0if s>35, v <,
1if s<35, v<ug,
us(v) if s =35, v < g,
7.00
6.95-]
6.907
6.857
___ 6807
>
~— 6.757|
3
-~
6.707
6.657]
6.607
6.557] /U* ,Ua /U*
6.50 T T T T

1.0 1.5 2.0 2.5 3.0 3.5
Switching volume

Fig. 3. Timetq(v) to reach7 from (5, v«) with the strategy: singular
arc until the switching volume, v = 1 until vy, w = 0 until s,..r. We

find thatt, (v) has a unique minimum fos = v, (see Section 1V)

V. CONCLUSION
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