Discrete-time system optimal dynamic traffic assignment (SO-DTA) with partial control for horizontal queuing networks

Abstract : We consider the System Optimal Dynamic Traffic Assignment (SO-DTA) problem with Partial Control for general networks with physical queuing. Our goal is to optimally control any subset of the networks agents to minimize the total congestion of all agents in the network. We adopt a flow dynamics model that is a Godunov discretization of the Lighthill–Williams–Richards partial differential equation with a triangular flux function and a corresponding multicommodity junction solver. The partial control formulation generalizes the SO-DTA problem to consider cases where only a fraction of the total flow can be controlled, as may arise in the context of certain incentive schemes. This leads to a nonconvex multicommodity optimization problem.We define a multicommodity junction model that only requires full Lagrangian paths for the controllable agents, and aggregate turn ratios for the noncontrollable (selfish) agents. We show how the resulting finite horizon nonlinear optimal control problem can be efficiently solved using the discrete adjoint method, leading to gradient computations that are linear in the size of the state space and the controls.
Type de document :
Article dans une revue
Transportation Science, INFORMS, 2018, 52 (4), pp.982-1001. 〈10.1287/trsc.2017.0800〉
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01095707
Contributeur : Paola Goatin <>
Soumis le : mardi 16 décembre 2014 - 10:16:43
Dernière modification le : lundi 3 décembre 2018 - 10:31:11
Document(s) archivé(s) le : lundi 23 mars 2015 - 13:41:46

Fichier

SO-DTAonline.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Données associées

Citation

Samitha Samaranayake, Jack Reilly, Walid Krichene, Maria Laura Delle Monache, Paola Goatin, et al.. Discrete-time system optimal dynamic traffic assignment (SO-DTA) with partial control for horizontal queuing networks. Transportation Science, INFORMS, 2018, 52 (4), pp.982-1001. 〈10.1287/trsc.2017.0800〉. 〈hal-01095707〉

Partager

Métriques

Consultations de la notice

793

Téléchargements de fichiers

406