Spike train statistics: from mathematical models to software to experiments

Bruno Cessac 1
1 NEUROMATHCOMP - Mathematical and Computational Neuroscience
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR6621
Abstract : Recent advances in multi-electrodes array acquisition has made it possible torecord the activity of up to several hundreds of neurons at the same time andto register their collective spiking activity. This opens up new perspectivesin understanding how a neuronal network encodes the response to a stimulus, andwhat a spike train tells up about the network structure and nonlinear dynamics.For this, one has to develop statistical models properly handling thespatio-temporal aspects of spike trains, including memory effects. In thistalk, I will review several such statistical models, including Maximum EntropyModels, Generalized Linear Model or neuromimetic models dealing with theiradvantages, limits, and relations.
Liste complète des métadonnées

https://hal.inria.fr/hal-01095746
Contributeur : Bruno Cessac <>
Soumis le : mardi 23 décembre 2014 - 11:45:08
Dernière modification le : jeudi 3 mai 2018 - 13:32:58

Annexe

Identifiants

  • HAL Id : hal-01095746, version 1

Citation

Bruno Cessac. Spike train statistics: from mathematical models to software to experiments. 6th Workshop in Computational Neuroscience in Marseille, Mar 2014, Marseille, France. 〈http://rncm2014.sciencesconf.org/〉. 〈hal-01095746〉

Partager

Métriques

Consultations de la notice

305

Téléchargements de fichiers

85