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Magnetoencephalography (MEG) and Electroencephalography (EEG) inverse problem is well-known to require regularization to avoid ill-posedness. Usually, regularization is based on mathematical criteria
(minum norm, ...). Physiologically, the brain is organized in functional parcels and imposing a certain homogeneity of the activity within these parcels was proven to be an efficient way to analyze the
MEG/EEG data [1][6]. The parcels information can be computed from diffusion Magnetic Resonances Imaging (dMRI) by grouping together source positions shared the same connectivity profile (computed
as tractograms from diffusion images). In this work, three parcel-based inverse problem approaches have been tested. The first two approaches are based on minimum norm with added regularization
terms to account for the parcel information. They differ by the use of a hard/soft constraint in the way they impose that the activity is constant within each parcel [4]. The third approach is based on
the Maximum Entropy on Mean (MEM) framework [2]. The dMRI-base and random cortex parcellation, we test also the use of Multivariate Source Pre-localization (MSP) [5] in the source reconstruction.

2.2 Real data

In this part of the work, the three reconstruction algorithms were used to find
the activation map on the cortex from a real MEG data|3].The data [3] includes
also the T1 and DWI information. The MEG/EEG was recorded from a visual
stimulus (3 class pictures). The average trials for one subject and one class
(famous face) was used.

3/ Soft constraint (PC):[

Some variation in each patch is allowed by introducing the Laplacian regular-
ization inside each patch. The solution is obtained by minimizing the following:
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Let the magnetic field, b, be the measured by the MEG sensors during a

large number of repetitions of a given task, and m be the sample statistics of U(?“) — Hm — G’F‘ |% + )\Hr‘ |% + H‘ ‘W’r‘ |% o e 1P| Tf ’ _ J
the mean value of the instantaneous magnetic field on the sensors with additive Wi, j) = ToT if r(2) €p
noise € , and G is the leadfield matrix. 2 0 if r(2) € p
m = E[b] m = GE[R] + ¢ R I
The source space of size N is parcelized into K regions. R is the multidi- esu ts — PSS AR S

mentional continuous random variable that describes the intensities of the dis-
tributed sources. We denote by du the reference probability distribution and
can be computed as:

2.1 Synthetic data

K
du(r) = || duril Sk)m(Sk) )
S k=1
where 7(S})) is the probability that the patch k is active or not, and .S is the set

of state variable .

1/ MEM framework:[2

R has the following probability law: dp(r) = f(r)du(r)
The pu — entropy is defined as: z l

d iv MEM MSP MEM dMRI PC dMRI PSS dMRI
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The source intensities are obtained by minimizing the following functional:

L(p, A\, Xo) = =S, (dp) + X' (m — Gr) + Xo(1 — / dp(r)) In all the results, we neglected the sources that are less than 40% of the maxi- MEM MSP MEM dMRI

The solution is: mum intensity. The error was computed as follows: *
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Assuming K uncorrelated cortical regions, the reference probability distribution
and the source intensity in every patch P, can be computed as:

K 28 ‘ |
=] m(Sk)du(re|S) - O

MEM dMRI

PC dMRI PSS dMRI

Error

3Conc|usion

MEM solution was enhanced by using the dMRI parcellation. PC is quite
insensitive to parcellation but is very computationally intensive. Contrary to
MEM and PC, PSS while being very fast is quite sensitive to the choice of
parcellation. Interestingly, the best results are obtained by averaging solutions
over multiple random clustering (at the cost of computational time), which
might be interesting if no dMRI information is available. This is maybe due
to the constrained dMRI pre-parcellation. A post clustering of the boundaries
on the dMRI parcellation can be done to reduce the effect of the geometrical
constraint. Future work will look at generalizing these results to EEG. Another
direction is to use the reduced leadfield in the MEM framework (CP-MEM) by

using G i and rx instead of G and r. First results are:
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We used the CM EM implementation [5].

2/ Hard constraint (PSS):[]

In this approach we assume a constant amplitude in each cortical region, which
allows us to reduce the source space from N to K (K < N). The intensities is
obtained by minimizing the following:

xecution Tim
PSS: 0.5s
MEM: 19.4s
PS: 20min

Random: 100 parcellation

Similarly to [6], 100
random parcellation were
generated with fixe%
region size. It uses the
MEM dMRI - PC dMRL | PSS dMRI conngected vertices to grow

‘ N . a” 57 the regions till it reach a
fixed size. There was no
constraint in the contrary
to the dMRI parcellation
which was obtained via
Destrieux atlas.
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U(r) = [Im — Grrkllz + Allrxll3

(G 1s the reduced leadfield matrix.
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