Bicluster enumeration using Formal Concept Analysis

Victor Codocedo 1 Amedeo Napoli 1
1 ORPAILLEUR - Knowledge representation, reasonning
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : In this work we introduce a novel technique to enumerate constant row/column value biclusters using formal concept analysis. To achieve this, a numerical data-table (standard input for biclustering al-gorithms) is modelled as a many-valued context where rows represent objects and columns represent attributes. Using equivalence relations de-fined for each single column, we are able to translate the bicluster mining problem in terms of the partition pattern structure framework. We show how biclustering can benefit from the FCA framework through its ro-bust theoretical description and efficient algorithms. Finally, we show how this technique is able to find high quality biclusters (in terms of the mean squared error) more efficiently than a state-of-the-art bicluster algorithm.
Type de document :
Communication dans un congrès
What formal concept analysis can do for artificial intelligence? (FCA4AI 2014) Workshop at ECAI 2014, Aug 2014, Prague, Czech Republic. 2014
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01095884
Contributeur : Victor Codocedo <>
Soumis le : mardi 16 décembre 2014 - 14:09:07
Dernière modification le : jeudi 11 janvier 2018 - 06:25:24
Document(s) archivé(s) le : lundi 23 mars 2015 - 14:02:10

Fichier

cona-fca4ai14-cr.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01095884, version 1

Collections

Citation

Victor Codocedo, Amedeo Napoli. Bicluster enumeration using Formal Concept Analysis. What formal concept analysis can do for artificial intelligence? (FCA4AI 2014) Workshop at ECAI 2014, Aug 2014, Prague, Czech Republic. 2014. 〈hal-01095884〉

Partager

Métriques

Consultations de la notice

147

Téléchargements de fichiers

200