Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains

Hassan Nasser 1 Bruno Cessac 1
1 NEUROMATHCOMP - Mathematical and Computational Neuroscience
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR6621
Abstract : We propose a numerical method to learn maximum entropy (MaxEnt) distributions with spatio-temporal constraints from experimental spike trains. This is an extension of two papers, [10] and [4], which proposed the estimation of parameters where only spatial constraints were taken into account. The extension we propose allows one to properly handle memory effects in spike statistics, for large-sized neural networks.
Liste complète des métadonnées

https://hal.inria.fr/hal-01096213
Contributeur : Bruno Cessac <>
Soumis le : mercredi 17 décembre 2014 - 08:40:02
Dernière modification le : lundi 10 décembre 2018 - 16:14:08

Lien texte intégral

Identifiants

Citation

Hassan Nasser, Bruno Cessac. Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains. Entropy, MDPI, 2014, 16 (4), pp.2244-2277. 〈http://www.mdpi.com/1099-4300/16/4/2244#tabs-5〉. 〈10.3390/e16042244〉. 〈hal-01096213〉

Partager

Métriques

Consultations de la notice

293