Heteroclinic cycles in Hopfield networks

Pascal Chossat 1 Maciej Krupa 2
1 NEUROMATHCOMP - Mathematical and Computational Neuroscience
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR6621
Abstract : Learning or memory formation are associated with the strengthening of the synaptic connections between neurons according to a pattern reflected by the input. According to this theory a retained memory sequence is associated to a dynamic pattern of the associated neural circuit. In this work we consider a class of network neuron models, known as Hopfield networks, with a learning rule which consists of transforming an information string to a coupling pattern. Within this class of models we study dynamic patterns, known as robust heteroclinic cycles, and establish a tight connection between their existence and the structure of the coupling.
Type de document :
Article dans une revue
Journal of Nonlinear Science, Springer Verlag, 2016, 〈10.1007/s00332-015-9276-3〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01096505
Contributeur : Pascal Chossat <>
Soumis le : mercredi 17 décembre 2014 - 16:03:04
Dernière modification le : vendredi 12 janvier 2018 - 11:02:26
Document(s) archivé(s) le : lundi 23 mars 2015 - 15:35:46

Fichier

stocyc1210.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Copyright (Tous droits réservés)

Identifiants

Citation

Pascal Chossat, Maciej Krupa. Heteroclinic cycles in Hopfield networks. Journal of Nonlinear Science, Springer Verlag, 2016, 〈10.1007/s00332-015-9276-3〉. 〈hal-01096505〉

Partager

Métriques

Consultations de la notice

303

Téléchargements de fichiers

151