Y. Amit, M. Fink, N. Srebro, and S. Ullman, Uncovering shared structures in multiclass classification, Proceedings of the 24th international conference on Machine learning, ICML '07, 2007.
DOI : 10.1145/1273496.1273499

R. [. Bach, J. Jenatton, G. Mairal, and . Obozinski, Optimization with sparsityinducing penalties, Machine Learning, pp.1-106, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00613125

P. [. Byrd, J. Lu, C. Nocedal, and . Zhu, A Limited Memory Algorithm for Bound Constrained Optimization, SIAM Journal on Scientific Computing, vol.16, issue.5, pp.1190-1208, 1995.
DOI : 10.1137/0916069

V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, The Convex Geometry of Linear Inverse Problems, Foundations of Computational Mathematics, vol.1, issue.10, pp.805-849, 2012.
DOI : 10.1007/s10208-012-9135-7

M. Dudik, Z. Harchaoui, and J. Malick, Lifted coordinate descent for learning with trace-norm regularization, Proceedings of the 15th International Conference on Artificial Intelligence and Statistics (AISTATS), 2012.
URL : https://hal.archives-ouvertes.fr/hal-00756802

E. [. Garber and . Hazan, A Linearly Convergent Conditional Gradient Algorithm with Applications to Online and Stochastic Optimization. ArXiv e-prints, 1301.

A. [. Guzman and . Nemirovski, On Lower Complexity Bounds for Large-Scale Smooth Convex Optimization. ArXiv e-prints, 1307.

A. [. Harchaoui, A. Juditsky, . Nemirovski-]-e, S. Hazan, and . Kale, Conditional Gradient Algorithms for Norm-Regularized Smooth Convex Optimization ArXiv e-prints Projection-free online learning, ICML, 2012.

]. P. Hub81 and . Huber, Robust statistics. Wiley Series in Probability and Mathematical Statistics, 1981.

]. M. Jag13 and . Jaggi, Revisiting Frank-Wolfe: Projection-free sparse convex optimization, ICML, pp.427-435, 2013.

A. [. Juditsky and . Nemirovski, First order methods for nonsmooth convex largescale optimization. Optimization for Machine Learning, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00981863

M. [. Jaggi and . Sulovský, A Simple Algorithm for Nuclear Norm Regularized Problems, ICML 2010: Proceedings of the 27th international conference on Machine learning, 2010.

]. G. Lan and . Lan, The Complexity of Large-scale Convex Programming under a Linear Optimization Oracle. ArXiv e-prints

]. A. Lew99 and . Lewis, Nonsmooth analysis of eigenvalues, Mathematical Programming, pp.1-24, 1999.

M. [. Lacoste-julien, M. Jaggi, P. Schmidt, and . Pletscher, Block-Coordinate Frank- Wolfe Optimization for Structural SVMs, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00720158

]. B. Mal-+-03, I. Miller, S. K. Albert, J. Lam, and J. Konstan, Movielens unplugged: Experiences with a recommender system on four mobile devices, ACM SIGCHI Conference on Human Factors in Computing Systems, 2003.

]. Y. Nes05 and . Nesterov, Smooth minimization of non-smooth functions, Math. Program, vol.103, issue.1, 2005.

A. [. Shalev-shwartz, O. Gonen, and . Shamir, Large-Scale Convex Minimization with a Low-Rank Constraint, ICML, 2011.

M. Weimer, A. Karatzoglou, Q. V. Le, and A. J. Smola, Cofi rank -maximum margin matrix factorization for collaborative ranking, NIPS, 2007.

Y. [. Zhang, D. Yu, and . Schuurmans, Accelerated training for matrix-norm regularization: A boosting approach, NIPS, 2012.