A. Plastino, H. Miller, and A. Plastino, Minimum Kullback entropy approach to the Fokker-Planck equation, Physical Review E, vol.56, issue.4, pp.3927-3934, 1997.
DOI : 10.1103/PhysRevE.56.3927

L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems. Part 1: The Linear Fokker-Planck Equation, Communications in Pure and Applied Mathematics, p.54, 2001.

S. Yu and P. Mehta, The Kullback-Leibler rate metric for comparing dynamical systems, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009.
DOI : 10.1109/CDC.2009.5399552

T. T. Georgiou and A. Lindquist, Kullback-Leibler approximation of spectral density functions, Proceedings of the 42nd IEEE Conference on Decision and Control, 2003.

M. Fritelli, The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets, Mathematical Finance, vol.10, issue.1, pp.39-52, 2000.
DOI : 10.1111/1467-9965.00079

P. Grandits and T. Rheinlander, On the minimal entropy martingale measure. The Annals of Probability, 2002.

Y. Miyahara, Minimal Relative Entropy Martingale Measure of Birth and Death Process. Discussion Papers in Economics, 2000.

Y. Miyahara, On the Minimal Entropy Martingale Measures for Geometric Lévy Processes. Discussion Papers in Economics, p.299, 2001.

A. S. Ustunel, Entropy, invertibility and variational calculus of adapted shifts on Wiener space, Journal of Functional Analysis, vol.257, issue.11, pp.3655-3689, 2009.
DOI : 10.1016/j.jfa.2009.03.015

R. Lassalle, Invertibility of adapted perturbations of the identity on abstract Wiener space, Journal of Functional Analysis, vol.262, issue.6, pp.2734-2776
DOI : 10.1016/j.jfa.2011.12.025

H. Akaike, Likelihood of a model and information criteria, Journal of Econometrics, vol.16, issue.1, pp.3-14, 1981.
DOI : 10.1016/0304-4076(81)90071-3

M. Do and M. Vetterli, Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance, IEEE Transactions on Image Processing, vol.11, issue.2, pp.146-158, 2002.
DOI : 10.1109/83.982822

H. Bozdogan, Akaike's Information Criterion and Recent Developments in Information Complexity, Journal of Mathematical Psychology, vol.44, issue.1, pp.62-91, 2000.
DOI : 10.1006/jmps.1999.1277

A. Dembo and O. Zeitouni, Large deviations techniques, 1997.

G. Ben-arous and A. Guionnet, Large deviations for Langevin spin glass dynamics. Probability Theory and Related Fields, pp.455-509, 1995.

O. Moynot and M. Samuelides, Large deviations and mean-field theory for asymmetric random recurrent neural networks. Probability Theory and Related Fields, pp.41-75, 2002.

O. Faugeras and J. Maclaurin, A large deviation principle for networks of rate neurons with correlated synaptic weights, BMC Neuroscience, vol.14, issue.Suppl 1
DOI : 10.1007/s004400100182

URL : https://hal.archives-ouvertes.fr/hal-00842310

O. Faugeras and J. Maclaurin, Large Deviations of an Ergodic Synchoronous Neural Network with Learning. Arxiv depot, 2014.

A. Budhiraja, P. M. Dupuis, and F. , Large deviation properties of weakly interacting processes via weak convergence methods, The Annals of Probability, vol.40, issue.1, pp.74-102, 2012.
DOI : 10.1214/10-AOP616

M. Fischer, On the form of the large deviation rate function for the empirical measures of weakly interacting systems, Bernoulli, vol.20, issue.4, pp.1765-1801, 2014.
DOI : 10.3150/13-BEJ540

J. Baladron, D. Fasoli, O. Faugeras, and J. Touboul, Mean Field description of and propagation of chaos in recurrent multipopulation networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00846140

D. Dawson and J. Gartner, Large deviations from the mckean-vlasov limit for weakly interacting diffusions, 1987.

I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol.113, p.470, 1991.

M. Donsker and S. Varadhan, Asymptotic Evaluation of Certain Markov Process Expectations for Large Time, IV. Communications on Pure and Applied Mathematics, pp.183-212, 1983.

N. X. Xanh and H. Zessin, Ergodic Theorems for Spatial Processes, Z. Wahfscheinlichkeitstheorie verw Gebiete, vol.48, pp.133-158, 1979.

P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations, 1997.
DOI : 10.1002/9781118165904

D. Revuz and M. Yor, Continuous Martingales and Brownian Motion This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license, 1991.