Only distances are required to reconstruct submanifolds - Archive ouverte HAL Access content directly
Reports (Research Report) Year : 2014

Only distances are required to reconstruct submanifolds

(1) , (2) , (3) , (1)
1
2
3
Jean-Daniel Boissonnat
  • Function : Author
  • PersonId : 830857
Arijit Ghosh
  • Function : Author
  • PersonId : 938794
Steve Y. Oudot
  • Function : Author
  • PersonId : 845393

Abstract

In this paper, we give the first algorithm that outputs a faithful reconstruction of a submanifold of Euclidean space without maintaining or even constructing complicated data structures such as Voronoi diagrams or Delaunay complexes. Our algorithm uses the witness complex and relies on the stability of power protection, a notion introduced in this paper. The complexity of the algorithm depends exponentially on the intrinsic dimension of the manifold, rather than the dimension of ambient space, and linearly on the dimension of the ambient space. Another interesting feature of this work is that no explicit coordinates of the points in the point sample is needed. The algorithm only needs the distance matrix as input, i.e., only distance between points in the point sample as input.
Vignette du fichier
metre-a-mesurer.png (89.9 Ko) Télécharger le fichier Fichier principal
Vignette du fichier
submission-cgta.pdf (441.93 Ko) Télécharger le fichier
Format : Figure, Image
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01096798 , version 1 (18-12-2014)

Identifiers

  • HAL Id : hal-01096798 , version 1

Cite

Jean-Daniel Boissonnat, Ramsay Dyer, Arijit Ghosh, Steve Y. Oudot. Only distances are required to reconstruct submanifolds. [Research Report] INRIA Sophia Antipolis. 2014. ⟨hal-01096798⟩

Collections

INRIA INRIA2 LARA
249 View
123 Download

Share

Gmail Facebook Twitter LinkedIn More