Sampling Online Social Networks: An Experimental Study of Twitter

Abstract : Online social networks (OSNs) are an important source of information for scientists in different fields such as computer science, sociology, economics, etc. However, it is hard to study OSNs as they are very large. For instance, Facebook has 1.28 billion active users in March 2014 and Twitter claims 255 million active users in April 2014. Also, com-panies take measures to prevent crawls of their OSNs and refrain from sharing their data with the research community. For these reasons, we argue that sampling techniques will be the best technique to study OSNs in the future. In this work, we take an experimental approach to study the characteristics of well-known sampling techniques on a full social graph of Twitter crawled in 2012 [2]. Our contri-bution is to evaluate the behavior of these techniques on a real directed graph by considering two sampling scenarios: (a) obtaining most popular users (b) obtaining an unbiased sample of users, and to find the most suitable sampling tech-niques for each scenario.
Type de document :
Poster
ACM SIGCOMM 2014, Dec 2014, Chicago, IL, United States. 〈10.1145/2619239.2631452〉
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01096980
Contributeur : Maksym Gabielkov <>
Soumis le : jeudi 18 décembre 2014 - 15:38:25
Dernière modification le : jeudi 11 janvier 2018 - 16:22:44
Document(s) archivé(s) le : samedi 15 avril 2017 - 10:43:55

Fichiers

gabielkov_sampling.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Maksym Gabielkov, Ashwin Rao, Arnaud Legout. Sampling Online Social Networks: An Experimental Study of Twitter. ACM SIGCOMM 2014, Dec 2014, Chicago, IL, United States. 〈10.1145/2619239.2631452〉. 〈hal-01096980〉

Partager

Métriques

Consultations de la notice

326

Téléchargements de fichiers

449