Delaunay Stability via Perturbations - Archive ouverte HAL Access content directly
Journal Articles International Journal of Computational Geometry and Applications Year : 2014

Delaunay Stability via Perturbations

(1) , (2) , (3)
1
2
3

Abstract

We present an algorithm that takes as input a finite point set in Rm , and performs a perturbation that guarantees that the Delaunay triangulation of the resulting perturbed point set has quantifiable stability with respect to the metric and the point positions. There is also a guarantee on the quality of the simplices: they cannot be too flat. The algorithm provides an alternative tool to the weighting or refinement methods to remove poorly shaped simplices in Delaunay triangulations of arbitrary dimension, but in addition it provides a guarantee of stability for the resulting triangulation.
Fichier principal
Vignette du fichier
flat_pert.pdf (397.95 Ko) Télécharger le fichier
Vignette du fichier
pert_ball_shell.jpg (47.14 Ko) Télécharger le fichier
Vignette du fichier
pert_ball_shell.png (95.09 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Format : Figure, Image
Origin : Files produced by the author(s)
Format : Figure, Image
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01097086 , version 1 (18-12-2014)

Identifiers

Cite

Jean-Daniel Boissonnat, Ramsay Dyer, Arijit Ghosh. Delaunay Stability via Perturbations. International Journal of Computational Geometry and Applications, 2014, 24, pp.125 - 152. ⟨10.1142/S021819591450006X⟩. ⟨hal-01097086⟩

Collections

INRIA INRIA2
207 View
125 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More