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Abstract In this paper we study decentralized routing in
small-world networks that combine a wide variation in node
degrees with a notion of spatial embedding. Specifically,
we consider a variant of J. Kleinberg’s grid-based small-
world model in which (1) the number of long-range edges
of each node is not fixed, but is drawn from a power-law
probability distribution with exponent parameter α ≥ 0 and
constant mean, and (2) the long-range edges are consid-
ered to be bidirectional for the purposes of routing. This
model is motivated by empirical observations indicating that
several real networks have degrees that follow a power-
law distribution. The measured power-law exponent α for
these networks is often in the range between 2 and 3. For
the small-world model we consider, we show that when
2 < α < 3 the standard greedy routing algorithm, in which
a node forwards the message to its neighbor that is closest
to the target in the grid, finishes in an expected number of
O(logα−1 n · log logn) steps, for any source–target pair. This
is asymptotically smaller than the O(log2 n) steps needed in
Kleinberg’s original model with the same average degree,
and approaches O(logn) as α approaches 2. Further, we
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show that when 0 ≤ α < 2 or α ≥ 3 the expected number
of steps is O(log2 n), while for α = 2 it is O(log4/3 n). We
complement these results with lower bounds that match the
upper bounds within at most a log logn factor.
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1 Introduction

The study of small-world networks was initiated by the
famous “six-degrees-of-separation” experiments conducted
by Milgram in the 1960s [33]. These experiments quantified
the so-called “small-world phenomenon,” that is, the prin-
ciple that almost all people are linked by short chains of
acquaintances. Milgram’s findings have been subsequently
confirmed by other experiments and measurements, e.g., by
Dodds, Muhamad, and Watts [12], and Backstrom, Boldi,
Rosa, Ugander, and Vigna [5]. Further, it has been ob-
served that several real networks, including social, informa-
tion, technological, and biological networks, exhibit similar
small-world properties; see, e.g., the surveys by Albert and
Barabási [3] and Newman [34], and the book by Dorogovt-
sev and Mendes [13].

A striking aspect of Milgram’s experiments, pointed
out by J. Kleinberg [24, 23], is that not only do short
chains between people exist, but individuals are collectively
very effective at finding them using only local information.
To study this algorithmic aspect of the small-world phe-
nomenon Kleinberg proposed a simple random graph model,
building upon a small-world model proposed by Watts and
Strogatz [38]. In Kleinberg’s model, individuals are nodes
at the lattice points of a two-dimensional n× n square lat-
tice, and acquaintance relationships between individuals are
represented by directed edges. Each node u has edges to all
nodes whose lattice distance from u is at most r, for some
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constant r. Further, u has k random long-range edges, where
k is another constant parameter. Each of these k edges points
to a node chosen independently at random according to the
2-harmonic probability distribution, i.e., each node v is cho-
sen with probability proportional to 1/(du,v)

2, where du,v is
the distance between u and v in the lattice. Kleinberg showed
that a simple greedy routing algorithm, in which a node for-
wards the message to its neighbor that is closest to the tar-
get in the lattice, routes a message in an expected number
of O(log2 n) steps, for any source–target pair. (This bound
was subsequently shown to be tight for a pair chosen uni-
formly at random, by Barrière, Fraigniaud, Kranakis, and
Krizanc [6], and Martel and Nguyen [31].) Note that the
above greedy routing algorithm is decentralized, in the sense
that it does not require knowledge of the long-range edges
of nodes not yet visited. Kleinberg showed also that any de-
centralized routing algorithm needs an expected number of
steps that is a polynomial function in n, if the long-range
edges are chosen from the h-harmonic distribution for a con-
stant h 6= 2.1

The above results readily extend to the analogous model
based on the `-dimensional lattice, for any constant `≥ 1. In
this model, the O(log2 n) expected routing time is achieved
when the `-harmonic distribution is used to choose the long-
range edges. Further, similar results have been shown for
several variants and generalizations of this model, where
base structures as general as metrics of bounded doubling di-
mension are used in place of the lattice (cf. Related Work).
The probability distribution used to choose the long-range
edges in those models is similar to the harmonic distribu-
tion considered by Kleinberg [24]. Specifically, it is a vari-
ant of the following natural distribution: the probability that
node u has a long-range edge to node v is inversely propor-
tional to the number of nodes contained in the smallest ball
(in the underlying metric space) that is centered at u and
contains v. Interestingly, empirical results by Liben-Nowell,
Novak, Kumar, Raghavan, and Tomkins [29] indicate that
two-thirds of friendships are geographically distributed that
way, i.e., “the probability of befriending a particular person
is inversely proportional to the number of closer people.”

Kleinberg’s model and subsequent generalizations of it
do not take into account the well-established fact that social
and other real networks have a highly skewed distribution of
node degrees. It has been observed that the degree distribu-
tion of these networks is a power law, i.e., the probability
that a node has degree k is proportional to 1/kα [3, 13, 34].
Further, the value of the power-law exponent α has been
measured to be between 2 and 3 for several real network,
including social networks (e.g., the collaboration network

1 Paths of polylogarithmic length exist between nodes for a wide
range of values for parameter h, as shown by Martel and Nguyen [31,
32]. However, short paths can be efficiently discovered by a decentral-
ized algorithm only when h = 2.

of film actors, and networks of email messages), samples
of the Web and the Internet, various peer-to-peer networks,
and metabolic and protein interaction biological networks
(see [34, Table II]). A straightforward way to reconcile
Kleinberg’s model with a power-law degree distribution is
to choose the number of long-range edges of each node in-
dependently at random from that distribution; this approach
was first proposed by Kleinberg in [26].2 It is reasonable to
expect that a power-law degree distribution can reduce the
network diameter or the average length of shortest paths be-
tween nodes, e.g., similar to the works of Bollobás and Rior-
dan [7], and Chung and Lu [8]. However, prior to our work
there were no results suggesting that power-law degree dis-
tributions could improve the speed of greedy routing.

1.1 Our contribution

We consider a simple variant of Kleinberg’s `-dimensional
small-world model [24], in which nodes have a power-law
degree distribution. In this model each long-range edge is
drawn independently at random from the `-harmonic dis-
tribution, i.e., the distribution that yields an expected rout-
ing time of O(log2 n) in Kleinberg’s model. The number
of long-range edges of each node is drawn independently
at random from a power-law distribution with exponent pa-
rameter α ≥ 0 and a fixed constant expected value. Further,
we assume that each node has at least one long-range edge.
(For a precise description of the model see Section 2.) For
this network, we study the complexity of the same greedy
routing algorithm considered by Kleinberg, except that we
treat long-range edges as bidirectional; i.e., a node forwards
the message to its out- or in-neighbor that is closest to the
target in the grid. If we treat long-range edges as unidirec-
tional, then we observe that greedy routing performs asymp-
totically the same as in Kleinberg’s original model.3 Having
bidirectional long-range edges is qualitatively different, be-
cause in this case a node of high degree is easy to find, while
if long-range edges are unidirectional then a node of high
out-degree may have low in-degree and thus it may be diffi-
cult to find.

We now summarize our results (see also Table 1, and
Figure 1). For the case of 2 < α < 3, which is the case
for many real networks including social networks, we show
that routing finishes in an expected number of O(logα−1 n ·
log logn) steps for any source–target pair of nodes. This is
asymptotically smaller than the O(log2 n) steps needed in
Kleinberg’s original model with the same average number
of long-range edges per node, and it approaches O(logn) as

2 The extent to which this model resembles real social networks has
yet to be evaluated empirically.

3 For the case of `= 1, this follows also from a general lower bound
by Dietzfelbinger and Woelfel [11].
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Power-law Upper bound
exponent α (for any pair)

Lower bound

0≤ α < 2 O(log2 n) Ω(log2 n) (for worst pair)
α = 2 O(log4/3 n) Ω(log4/3 n) (for worst pair)

2 < α < 3 O(logα−1 n · log logn) Ω(logα−1 n) (for random pair)
α = 3 O(log2 n) Ω(log2 n/ log logn) (for random pair)
α > 3 O(log2 n) Ω(log2 n) (for random pair)

Table 1 Our bounds on the expected routing time of greedy routing, for the small-world model with a power-law degree distribution of exponent
α , and bidirectional long-range edges. The upper bounds hold for any source–target pair. The lower bounds hold for a randomly chosen pair when
α > 2, and for the worst pair when α ≤ 2. The upper bounds are stated formally in Theorem 1, and the lower bounds in Theorem 2.

α approaches 2. We complement this upper bound with an
almost matching lower bound of Ω(logα−1 n) steps, on the
expected routing time for a uniformly random pair. For the
case of α ≥ 3 or α < 2, we show that an expected number
of O(log2 n) steps suffices for any pair. Further, we show a
matching lower bound of Ω(log2 n) expected steps for a ran-
dom pair when α > 3, and for the worst pair when α < 2; for
α = 3 we show a lower bound that is weaker by a loglogn
factor. Finally, for the critical value α = 2, we show an up-
per bound of O(log4/3 n) on the expected number of steps
for any pair, and a matching lower bound of Ω(log4/3 n) for
the worst pair.

1.2 Related work

Several papers have extended Kleinberg’s work [24] to
small-world models based on structures other than the lat-
tice (or the grid graph). In a follow-up work, Kleinberg [25]
extended his results to a hierarchical model, in which nodes
are the leaves of a complete b-ary tree, and the distance be-
tween two nodes is the length of the path between them
in the tree. Further, he proposed a model that generalizes
both the lattice-based and the hierarchical models, in which
the distances between nodes are induced by certain fam-
ilies of node sets. Small-world networks on base struc-
tures similar to the grid graph were studied by Martel and
Nguyen [31, 32], who computed the diameter of these net-
works. Duchon, Hanusse, Lebhar, and Schabanel [14] con-
sidered small-world networks in which the base graph has
a “bounded growth rate” property. Fraigniaud [16] stud-
ied base graphs of bounded tree-width. Slivkins [37] con-
sidered the case in which nodes are embedded in a met-
ric space of bounded doubling dimension. Finally, Abraham
and Gavoille [1] studied base graphs that exclude a fixed
minor. In all these settings, greedy routing (with respect to
distances in the base structure) finishes in a polylogarithmic
expected number of steps, for suitable distributions of long-
range edges similar to the `-harmonic distribution on the `-
dimensional lattice. More recently, in [19] we considered the
case in which the base structure is an arbitrary graph, and we
showed that routing in sub-polynomial expected time can be

achieved by a slight variant of greedy routing, for long-range
edges drawn from an adaptation of the harmonic distribu-
tion.

A long line of work has studied lower bounds for greedy
routing on small-world networks, e.g., the works by Aspnes,
Diamadi, and Shah [4], Flammini, Moscardelli, Navarra,
and Pérennes [15], Giakkoupis and Hadzilacos [20], and Di-
etzfelbinger and Woelfel [10, 11]. These bounds are for an
extension of Kleinberg’s one-dimensional model, which as-
sumes that the distribution used to choose the number of
long-range edges per node and the length of these edges can
be arbitrary, but is the same for all nodes. In the most re-
cent of these works [11], it was shown that for any distri-
bution with constant expected number of long-range edges
per node, greedy routing needs an expected number of
Ω(log2 n) steps for a random source–target pair of nodes.
This result does not contradict our results, as it assumes uni-
directional long-range edges.

Several decentralized routing algorithms, other than the
standard greedy algorithm, have been proposed for Klein-
berg’s network. Manku, Naor, and Wieder [30] considered
a greedy algorithm assuming that each node knows also the
neighbors of its neighbors; their results built upon the work
of Coppersmith, Gamarnik, and Sviridenko [9]. Lebhar and
Schabanel [28], Fraigniaud, Gavoille, and Paul [17], Martel
and Nguyen [31], and Giakkoupis and Schabanel [21] pro-
posed algorithms that construct shorter paths than greedy
routing, but they visit (or “consult”) an additional small
number of nearby nodes before they decide the next node
in the path. For more related work on decentralized rout-
ing (or search) in small-world networks, see the survey by
Kleinberg [26]. See also the work by Lattanzi, Panconesi,
and Sivakumar [27] for a different model on search in social
networks.

Exploiting the degree distribution in the design of de-
centralized search algorithms for networks with power-
law degree distributions has been investigated by Adamic,
Lukose, Puniyani, and Huberman [2], Kim, Yoon, Han, and
Jeong [22], and Sarshar, Boykin, and Roychowdhury [35].
In these works, the search algorithm has access only to in-
formation on the degrees of neighboring nodes, and not to
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Fig. 1 Summary of our results.

any type of spacial embedding of nodes as in Kleinberg’s
model. Simsek and Jensen [36] proposed a heuristic routing
algorithm for a variant of Kleinberg’s model [24] similar to
ours, in which nodes have widely varying degrees. Their al-
gorithm assumes that nodes know both the location and the
degree of their neighbors, and their simulation results sug-
gest that it is faster than decentralized algorithms that use
only one of these two types of information. A main differ-
ence between this work and ours is that the greedy routing
algorithm we consider does not take into account node de-
grees. Despite that, we show that it can benefit from power-
law degree distributions. Further, in our work we give prov-
able bounds as opposed to Simsek and Jensen who provide
an experimental evaluation.

2 Model and results

Below we describe the small-world model and the routing
algorithms we consider, then state our main theorems, and
finally give some intuition for the results.

2.1 Small-world graph

For integers `,n ≥ 1 and a real α ≥ 0, we denote by
SW(`,n,α) a random directed graph generated as follows.
We start with an `-dimensional grid graph that wraps around
(i.e., a torus), in which edges are bidirectional and every di-
mension has size n. Thus the total number of nodes is n`. We
will refer to this graph as the grid, and call the 2` neighbors
of each node its grid-neighbors. Further for any two nodes

u,v we define the grid-distance, or simply distance, between
u and v to be their shortest-path distance in the grid, and de-
note it by d(u,v) or du,v.4 This deterministic grid is then aug-
mented by adding random edges as follows. For each node
u, we draw independently at random an integer Cu from a
power-law distribution with exponent α and mean 2; the de-
tails of this distribution are given below. Then, we choose
Cu nodes independently at random (with replacement) ac-
cording to a distribution that assigns to each node v 6= u a
probability proportional to d(u,v)−`; the details are given
below. The resulting multi-set of nodes is the set of out-
contacts of u, and we draw an edge from u to each of these
out-contacts, allowing parallel edges. These edges are the
long-range edges of u. We say that node v is an in-contact
of u, if u is an out-contact of v.

Next we specify the two probability distributions used
in the above construction. The power-law distribution from
which the number Cu of the out-contacts of u is drawn is
defined as follows. If α > 2 then Cu is chosen from the set
{1,2, . . .} of positive integers such that

Pr(Cu = k) = qk :=

{
k−α/ν , if k ≥ 2;
1−∑i≥2 i−α/ν , if k = 1,

4 In Kleinberg’s original model, a node has edges to all nodes at dis-
tance at most r; in our model we assume that r = 1. Further, in Klein-
berg’s model the grid does not wrap around; this assumption, however,
is used in many subsequent works, e.g., by Martel and Nguyen [31, 32].
We expect that these two assumptions are not critical for our results.
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where ν is the normalizing constant that yields E[Cu] = 2,
i.e., ∑k≥1 kqk = 2. It follows that

ν = ∑
i≥2

(
i1−α − i−α

)
.

For α ≤ 2 this definition does not work, as in this case the
sum above is unbounded. For this reason we impose a max-
imum value of kmax on Cu, i.e., Cu is now chosen from the
finite set {1, . . . ,kmax}; other than that, the distribution we
use is exactly the same as in the case of α > 2. We will as-
sume that kmax = nγ for some constant 0 < γ ≤ `.

We point out that our model assumptions that Cu ≥ 1
with probability 1 and E[Cu] = 2 were made just to simplify
exposition. The results of this paper hold as long as Pr(Cu ≥
1) = Ω(1) and E[Cu] = Θ(1). Hence, for the case of α >

2, we could use instead the more natural distribution that
Pr(Cu = k) = k−α/ν for any k ≥ 1 (i.e., including k = 1)
for a constant ν , and k = 0 with the remaining probability.
For α ≤ 2, we cannot assume that Pr(Cu = k) = k−α/ν for
k = 1, as then Cu must be zero with probability 1−o(1) (and
thus Pr(Cu ≥ 1) = o(1)) in order to have E[Cu] = O(1).

The distribution from which we choose each of the Cu
out-contacts of u is the standard distribution proposed by
Kleinberg: Each node v 6= u is picked with probability

pdu,v := (du,v)
−`/η ,

where ` is the dimension of the grid and η is the normalizing
factor

η = ∑
v6=u

(du,v)
−` =Θ(lnn).

The assumption that the out-contacts of a node are chosen
with replacement is standard and is convenient for the anal-
ysis. We expect that the same asymptotic results should hold
even if the out-contacts are choose without replacement. The
reason is that the fraction of duplicate out-contacts is signifi-
cant only for very large values of Cu, and our analysis shows
that the role of nodes u with such large Cu is negligible, be-
cause they are so rare.

Finally, for the number of in-contacts of a node, it can be
show that it follows a distribution that is close to a binomial
distribution with constant mean.

2.2 Greedy routing

We consider two versions of greedy routing. The first is the
standard greedy protocol: A node u that receives a message
for target node t 6= u forwards the message to the node v
among its grid-neighbors and out-contacts that is closest to t
in the grid, i.e., d(v, t) is minimal. If there are more than one
such v, then any of them can be used, but we assume that
the choice is deterministic (e.g., we can use the first of those

v in the lexicographic order of their d-dimensional vector
of coordinates). We call this algorithm GreedyUniDir, as
the messages can be sent through an edge only along the
direction of the edge. The second algorithm we consider
is called GreedyBiDir, and ignores the direction of edges:
node u forwards the message to the node v among its grid-
neighbors, out-contacts, and in-contacts that is closest to t
in the grid.

We consider two measures for the performance of the
above routing algorithms. The first is the expected routing
time for the worst-case source–target pair, i.e., we measure
the expected routing time for each pair and then take the
largest of these expected times. The second measure is the
expected routing time for a source–target pair chosen uni-
formly at random. This is equivalent to measuring the ex-
pected routing time for each pair and then taking the av-
erage. Clearly, the first measure (for the worst pair) is al-
ways greater or equal to the second measure (for the random
pair). Our upper bounds are for the worst pair, and our lower
bounds for a random pair, except for the lower bounds for
GreedyBiDir when α ≤ 2, which are for the worst pair.

2.3 Results

Next we state our main theorems. The asymptotic notation
is for n→ ∞, and we assume that ` and α are not functions
of n.

Theorem 1 (Upper bounds) The expected routing time
of GreedyUniDir for the worst pair in SW(`,n,α) is
O(log2 n). For GreedyBiDir, the expected routing time for
the worst pair is

O(log2 n), if 0≤ α < 2 or α ≥ 3;
O(logα−1 n · log logn), if 2 < α < 3;
O(log4/3 n), if α = 2.

Theorem 2 (Lower bounds) The expected routing time
of GreedyUniDir for a random pair in SW(`,n,α) is
Ω(log2 n). For GreedyBiDir, the expected routing time for
a random pair is

Ω(log2 n), if α > 3;
Ω(log2 n/ log logn), if α = 3;
Ω(logα−1 n), if 2 < α < 3;

and the expected routing time for the worst pair is{
Ω(log2 n), if 0≤ α < 2;
Ω(log4/3 n), if α = 2.
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2.4 Intuition

We give now some informal intuition for the results above.
For the O(log2 n) bound to hold it suffices that each node
has just one out-contact. Achieving smaller routing times
requires that nodes with ω(1) out-contacts are encountered
sufficiently often. For GreedyUniDir, the probability that
the next node in the routing path has k out-contacts equals
qk = Pr(Cu = k). We show that this probability is not high
enough to yield routing times below Ω(log2 n). In the case
of GreedyBiDir, nodes with many out-contacts are more
likely to be found than in GreedyUniDir, as they can be
reached through their long-range edges. The probability that
a given node has an in-contact with k out-contacts is pro-
portional to the fraction of long-range edges in the network
starting from nodes with k out-contacts, and is roughly kqk.
The actual probability that the next node in the routing path
has k out-contacts is smaller than that, and the main reason
is that only nodes that are closer to the target than the node
who has the message are relevant to routing. This reduces
the above probability of kqk by roughly a factor of lnd/ lnn,
where d is the current distance to the target.

For the case of 2 < α < 3, the above reasoning gives that
the probability of the next node in the path to have Θ(lnn)
out-contacts (more concretely, say, between lnn and 2lnn)
is roughly lnn · (lnn · qlnn) · (lnd/ lnn) ≈ lnd/ lnα−1 n; and
from such a node, the distance to the target halves in the
next step with probability Ω(1). Based on that we show
the O(lnα−1 n · log logn) bound. To prove the lower bound
we further observe that the contribution of nodes with ei-
ther o(lnn) or ω(lnn) out-contacts is negligible compared
to that of nodes with Θ(lnn) out-contacts. We point out
that for α → 2 the above upper bound approaches O(lnn),
which is the expected routing time in Kleinberg’s model for
k =Θ(lnn) out-contacts per node.

In the case of α = 2, roughly equal fractions of long-
range edges start from nodes with Θ(2i) out-contacts for
each i. When the distance d to the target is sufficiently large,
the distance decreases to d1−ε in a step with probability
roughly ln2 d/ ln2 n, and the nodes that contribute the most
to that reduction are those with a number of out-contacts
roughly between dε ′ and d, for constants ε and ε ′. It follows
that the distance to the target decreases quickly when d is
large, but when the distance drops below roughly 2(lnn)1/3

,
we have essentially no speedup. Then it takes

Θ(logn · log2(logn)1/3
) =Θ(log4/3 n)

steps to reach the target from that distance.
In the case of α > 3, nodes with ω(1) out-contacts are

very rare, and only a o(1) fraction of the long-range edges
starts from those nodes. It follows that the O(log2 n) bound
is tight for this case. On the other hand, when α < 2, a large
fraction of the long-range edges starts from nodes that have

a very high number of out-contacts. However, nodes with
ω(1) out-contacts are so rare that, with significant proba-
bility, no such node exists within distance Θ(nε) from the
target, for a sufficiently small constant ε . It follows that
Θ(logn · lognε) = Θ(log2 n) steps are needed to cover that
distance.

The lower bounds we provide for GreedyBiDir for α ≤
2 are shown for the worst pair only rather than a random pair.
In [18] we showed that the Ω(log4/3 n) bound for α = 2
holds also for a random pair, but here we consider just the
worst pair as the proof for the random pair is much more
involved. For α < 2, we do not know whether the O(log2 n)
bounds holds for a random pair.

3 Preliminaries

In this section we first introduce some notation, and then
prove a collection of results on the distribution of edges to
be used later in the analysis.

For two sets of nodes U1 and U2 we write U1 →U2 to
denote that some node from U2 is an out-contact of a node
from U1. If U1 or U2 is a singleton set, we may write its
element instead of the set in this notation, e.g., we will write
u→ v to denote {u}→ {v}. A ball Bu(r) centered at node u
with radius r is the set of nodes v with d(u,v)≤ r. A sphere
Su(r) is the set Bu(r)\Bu(r−1).

We denote by K(`,n,k) Kleinberg’s model obtained in
the same way as SW(`,n,α) except that each node u has
k out-contacts, instead of Cu. It follows that SW(`,n,α)

can be obtained from K(`,n,1), by adding Cu−1 additional
long-range edges from each node u.

Next we provide some bounds on the probability that a
given node in K(`,n,1) has out-contacts or in-contacts from
a given set of nodes.

Observation 1 Let u, t be two distinct nodes in K(`,n,1),
and U be a nonempty set of nodes.

(a) Pr(u→ Bt(r))

= O
(

ln
(

du,t
du,t−r

)
/ lnn

)
, for 1≤ r ≤ du,t −1.

(b) Pr(u→ Bt(r))

=


Ω

((
r

du,t

)`
/ lnn

)
, if 1≤ r ≤ du,t/2;

Ω

(
ln
(

du,t
du,t−r

)
/ lnn

)
, if du,t/2≤ r ≤ du,t −1.

(c) Pr(u→ Bt(du,t/2)) =Θ(1/ lnn).
(d) Pr(u→ Bt(du,t −1)) =Θ(ln(du,t)/ lnn).

(e) Pr(u→ St(r)) = O
(

1
lnn·(du,t−r)

)
, for 0≤ r ≤ du,t −1.

(f) Pr(u→U) = o(1), if |U |= no(1).
(g) Pr(U → u) ∈

[
Pr(u→U)/2, Pr(u→U)

]
.

(h) Pr(U 6→ u)≥ 1/4.
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Proof We give first some useful facts. The maximum dis-
tance between any two nodes is dmax = ` · bn/2c. The num-
ber of nodes at distance r from node t is

|St(r)|=

{
Θ
(
r`−1

)
, if 1≤ r ≤ n/2;

O
(
r`−1

)
, if n/2≤ r ≤ dmax.

(1)

For the case of 1 ≤ r ≤ n/2, the result follows from [31,
Fact 19(i)]. For the case of n/2≤ r≤ dmax, we just apply the
result for the previous case to the larger grid in which every
dimension has size dmax (instead of n), and we observe that
|St(r)| in the original grid is bounded by the corresponding
quantity in the larger grid. We can use the above bound for
|St(r)| to bound the size of ball Bt(r),

|Bt(r)|=
r

∑
i=0
|St(i)|=Θ(r`). (2)

(a): For each node v ∈ Bt(r), its distance du,v from u
satisfies du,t − r ≤ du,v ≤ du,t + r. It follows that Bt(r) ⊆⋃du,t+r

i=du,t−r Su(i), and thus

Pr(u→ Bt(r))≤
du,t+r

∑
i=du,t−r

Pr(u→ Su(i)) =
du,t+r

∑
i=du,t−r

|Su(i)| · pi

(1)
= O

(
du,t+r

∑
i=du,t−r

i`−1

lnn · i`

)

= O
(

ln
(

du,t + r
du,t − r

)
/ lnn

)
.

To complete the proof we argue that ln
(

du,t+r
du,t−r

)
≤

2ln
(

du,t
du,t−r

)
: We must show du,t+r

du,t−r ≤
(

du,t
du,t−r

)2
which is

equivalent to (du,t +r) ·(du,t−r)≤ (du,t)
2, and this is equiv-

alent to (du,t)
2− r2 ≤ (du,t)

2, which is true.

(b): First we consider the case of 1≤ r≤ (1−ε) ·du,t , for
an arbitrary small constant ε > 0. For each node v ∈ Bt(r)
we have du,v ≤ du,t + r ≤ 2du,t , and thus

Pr(u→ Bt(r))≥ |Bt(r)| · p2du,t

(2)
= Ω

(
r`

lnn · (2du,t)`

)
= Ω

(
r`

lnn · (du,t)`

)
.

This proves the case of r ≤ du,t/2, and also the case of
du,t/2 ≤ r ≤ (1− ε) · du,t , because in the latter case both
quantities ln

( du,t
du,t−r

)
and

( r
du,t

)` are Θ(1).
Next we consider the case of (1−ε) ·du,t < r ≤ du,t−1,

for a sufficiently small constant ε > 0; in particular, we will
need that ε ≤ 1/(4`2). Further, we assume that du,t > 1/ε ,
otherwise the above range for r is empty. We represent
each node by its ‘grid coordinates’, i.e., an `-vector from
{−bn/2c, . . . ,bn/2c}`; we assume that u = (0,0, . . . ,0) and
t = (x1, . . . ,x`). Since ∑

`
i=1 |xi| = du,t , it follows that for

some index i it holds |xi| ≥ du,t/`. We assume w.l.o.g. that
x1 ≥ du,t/`. Let t ′ = (x1,0, . . . ,0) and r′ = x1 − λ , where
λ = du,t − r. (Observe that r′ > 0, because λ < εdu,t as
r > (1− ε) · du,t , and εdu,t ≤ du,t/(4`2) < du,t/` ≤ x1.) If
we consider a shortest path from u to t in the grid, which
goes from u to t ′ and from there to t, it is easy to see that
ball Bt ′(r′) is a subset of Bt(r): for each node v ∈ Bt ′(r′) we
have

d(t,v)≤ d(t, t ′)+d(t ′,v)≤ (dt,u− x1)+ r′ = r,

and thus Bt ′(r′)⊆ Bt(r). Therefore,

Pr(u→ Bt(r))≥ Pr(u→ Bt ′(r
′)).

We will now lower bound the probability on the right side.
Let Li, for λ ≤ i ≤ x1, be the set of nodes v = (y1, . . . ,y`)
from Bt ′(r′) with y1 = i. The size of Li is then the number of
possible ways to fix y2, . . . ,y` such that d(v, t ′) ≤ r′, which
is equivalent to

|y2|+ · · ·+ |y`| ≤ r′− (x1− i) = i−λ . (3)

Thus if ` > 1, by counting only non-negative combinations
we obtain,

|Li| ≥
i−λ

∑
s=0

(
s+ `−2
`−2

)
= 1+

i−λ

∑
s=1

Ω(s`−2) =Ω

(
(i−λ )`−1

)
.

The above lower bound holds also when ` = 1, as in this
case |Li| = 1 or 2. Further, for each v = (i,y2, . . . ,y`) ∈ Li
we have d(v,u)≤ i+ |y2|+ · · ·+ |y`| ≤ 2i, by (3). It follows

Pr(u→ Bt ′(r
′))≥

x1

∑
i=λ

|Li| · p2i

= Ω

(
x1

∑
i=λ

(i−λ )`−1

lnn · (2i)`

)

= Ω

(
x1

∑
i=λ

(1−λ/i)`−1

lnn · i

)

= Ω

(
x1

∑
i=2λ

(1/2)`−1

lnn · i

)
= Ω

(
ln
( x1

2λ

)
/ lnn

)
.

To complete the proof we argue that ln
( x1

2λ

)
≥ ln

( du,t
du,t−r

)
/2:

We must show that
( x1

2λ

)2 ≥ du,t
du,t−r , and since x1 ≥ du,t/`

and λ = du,t−r, it suffices to show that
( du,t/`

2(du,t−r)

)2 ≥ du,t
du,t−r ,

which is equivalent to du,t−r
du,t
≤ 1

4`2 . The last inequality holds
because the left side is at most ε and we have assumed that
ε ≤ 1/(4`2).

(c), (d): Both results follow from (a) and (b).

(e): This result is a special case of [31, Fact 5].
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(f): For a fixed set size |U |, the probability Pr(u→ U)

is maximized when U consists of the |U | nodes closest to
u. From (1), the number of nodes at distance i from u is
|Su(i)| ≤ c · i`−1 for some constant c. It follows

Pr(u→U)≤
d(|U |/c)1/(`−1)e

∑
i=1

(c · i`−1 · pi)

= O

d(|U |/c)1/(`−1)e
∑
i=1

1
lnn · i


= O

 ln
(
(|U |/c)1/(`−1)

)
lnn

= O
(

ln(|U |)
lnn

)
= o(1),

as |U |= no(1).

(g): The upper bound follows from the union bound,

Pr(U → u)≤ ∑
v∈U

Pr(v→ u)

= ∑
v∈U

Pr(u→ v) = Pr(u→U).

For the lower bound we have

Pr(U → u) = 1−∏
v∈U

(1−Pr(v→ u))

≥ 1−∏
v∈U

e−Pr(v→u) = 1− e−∑v∈U Pr(v→u)

= 1− e−∑v∈U Pr(u→v) = 1− e−Pr(u→U)

≥ Pr(u→U)/2,

where for the last relation we used the fact that e−x≤ 1−x/2
for 0≤ x≤ 1.

(h): For each v ∈ U we have Pr(v 6→ u) = 1− Pr(v→
u) ≥ 4−Pr(v→u), because of the facts that 1− x ≥ 4−x for
0≤ x≤ 1/2, and Pr(v→ u)< 1/2. It follows that

Pr(U 6→ u) = ∏
v∈U

Pr(v 6→ u)≥∏
v∈U

4−Pr(v→u)

= 4−∑v∈U Pr(v→u) = 4−∑v∈U Pr(u→v)

= 4−Pr(v→U) ≥ 4−1.

This completes the proof of Observation 1. ut

The next claim gives bounds on the probability that a
given node u in SW(`,n,α) has out-contacts in some set U ,
conditionally on the event that u has (or has not) long-range
edges to nodes in another given set. The bounds are in terms
of simpler probability expressions that do not involve con-
ditioning on u having long-range edges to other sets. This
type of conditioning will be very common throughout our
analysis of GreedyBiDir, as, e.g., nodes that are closer to
the target than the node holding the message have no edges
to previous nodes in the routing path.

Observation 2 Let u be a node in SW(`,n,α), and
U,W,W ′ be disjoint sets of nodes not containing u. Sets U
and W ′ are nonempty, but W may be empty.

(a) Pr(u→U) ≤ Pr(u→U |Cu = 2) ≤ 2Pr(u→U |Cu =

1).
(b) For any event E , Pr(E | u 6→W )≤ (1+o(1)) ·Pr(E),

if |W |= no(1); in particular,
Pr(u→U | u 6→W ) ≤ (1+o(1)) ·Pr(u→U |Cu = 2),
if |W |= no(1).

(c) Pr(u→U | u 6→W )≤ Pr(u→U |Cu = 3), if |W |= no(1)

and |U |= no(1).
(d) Pr(u→U | u 6→W )≥ Pr(u→U |Cu = 1).
(e) Pr(u→U |Cu = k, u→W ′)≥ Pr(u→U |Cu = k−1).

(f) Pr(u→U |Cu = k, u 6→W )≤ Pr(u→U |Cu = k)
Pr(u 6→W |Cu = 1)

.

Proof (a): Let a := Pr(u 6→ U | Cu = 1); then Pr(u 6→ U |
Cu = k) = ak. We have

Pr(u 6→U) = ∑
k

Pr(u 6→U |Cu = k) ·Pr(Cu = k)

= ∑
k

ak ·Pr(Cu = k) = E
[
aCu
]
.

Since ax is a convex function, it follows from Jensen’s In-
equality that

E
[
aCu
]
≥ aE[Cu] = a2 = Pr(u 6→U |Cu = 2).

Therefore, Pr(u 6→ U) ≥ Pr(u 6→ U | Cu = 2), and thus
Pr(u→ U) ≤ Pr(u→ U | Cu = 2), as desired. Also, from
the union bound it follows Pr(u→U |Cu = 2) ≤ 2Pr(u→
U |Cu = 1).

(b): We have

Pr(E | u 6→W ) =
Pr(E ∧u 6→W )

Pr(u 6→W )
≤ Pr(E)

Pr(u 6→W )
,

and Pr(u 6→W ) = 1−Pr(u→W )
(a)
≥ 1−2Pr(u→W |Cu =

1)
Obs.1(f)
= 1−o(1). Thus,

Pr(E | u 6→W )≤ Pr(E)/(1−o(1)) = (1+o(1)) ·Pr(E).

The second part of (b) follows from the first and (a).

(c): Let a := Pr(u→U |Cu = 1), and note that a = o(1)
from Observation 1(f). We have

Pr(u→U | u 6→W )
(b)
≤ (1+o(1)) ·Pr(u→U |Cu = 2)

≤ 2a+o(a).

Further,

Pr(u→U |Cu = 3) = 1− (1−a)3

= 1− (1−3a+o(a)) = 3a−o(a),
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where the second-to-last relation holds because a = o(1).
From the two expressions above it follows Pr(u→U | u 6→
W )≤ Pr(u→U |Cu = 3).

(d): Since u has at least one out-contact, we have

Pr(u→U | u 6→W )≥ Pr(u→U | u 6→W, Cu = 1)

=
Pr(u→U ∧ u 6→W |Cu = 1)

Pr(u 6→W |Cu = 1)

=
Pr(u→U |Cu = 1)
Pr(u 6→W |Cu = 1)

≥ Pr(u→U |Cu = 1)
1

.

(e): Given that Cu = k and u→W ′, we can assume that
the out-contacts of u are chosen as follows. We start by
choosing (from the right probability distribution) the small-
est j such that the j-th out-contact of u is the first one that
belongs to W ′. Then we choose the first j− 1 out-contacts
conditionally on the event that u 6→W ′, and the last k− j
out-contacts without any conditioning. We note that the first
j−1 out-contacts are more likely to belong to U than if they
were chosen unconditionally. The claim then follows.

(f): From Bayes’ Rule we have

Pr(u→U |Cu = k, u 6→W )

=
Pr(u 6→W |Cu = k, u→U)

Pr(u 6→W |Cu = k)
·Pr(u→U |Cu = k).

Also from (e) it follows Pr(u 6→ W | Cu = k, u → U) ≤
Pr(u 6→W |Cu = k−1), and thus,

Pr(u 6→W |Cu = k, u→U)

Pr(u 6→W |Cu = k)

≤ Pr(u 6→W |Cu = k−1)
Pr(u 6→W |Cu = k)

=

(
Pr(u 6→W |Cu = 1)

)k−1(
Pr(u 6→W |Cu = 1)

)k =
1

Pr(u 6→W |Cu = 1)
.

Combining the above yields the claim.
This completes the proof of Observation 2. ut

4 Proof of the upper bounds

We prove now the upper bounds of Theorem 1. In Sec-
tion 4.1, we show an O(log2 n) bound that applies to both
algorithms for all exponents α . In fact, we prove a more
general lemma which states that O((logd + logβ−1) · logn)
steps suffice to reach the target from a node at distance d
with probability 1− β . The main claim we use is that the
distance to the target halves with probability Ω(1/ lnn) in
each step. This claim holds even if nodes have only one out-
contact each.

In Sections 4.2 and 4.3 we prove stronger bounds for
GreedyBiDir for the cases of 2 < α < 3 and α = 2,
respectively. For the case of 2 < α < 3, the key claim
is that the distance to the target halves with probability
Ω(logd/ logα−1 n) within O(1) steps, where d is the current
distance. (We note that this bound is larger than Ω(1/ lnn)
for d sufficiently large.) The proof of that claim lower
bounds the probability of the event that the next node in
the path: (1) is an in-contact of the previous node, (2) has
Θ(logn) out-contacts, and (3) has at least one out-contact
within distance d/2 from the target. For the case of α = 2,
we have a similar claim saying that the distance to the target
decreases to d1−ε for some constant ε > 0, with probability
Ω(log2 d/ log2 n) in the next O(1) steps. The proof lower
bounds the probability of the event that the next node in the
path (1) is an in-contact of the previous node, (2) has be-
tween dε1 and dε2 out-contacts, for some constants ε1 < ε2 <

1− ε , and (3) has some out-contact within distance dε from
the target. In both cases, 2 < α < 3 and α = 2, we use the
lemma from Section 4.1 to bound the number of remaining
steps when the distance to the target becomes sufficiently
small.

4.1 A general upper bound

In this section we prove a bound of O((logd + logβ−1) ·
logn) steps for routing between two given nodes at distance
d, that holds with probability 1−β . This bound applies to
both routing algorithms and all exponents α .

Lemma 1 For either protocol and any α ≥ 0, the routing
time for a pair of nodes s, t is O

(
(logds,t + logβ−1) · logn

)
with probability 1−β , for any 0< β < 1 (which may depend
on n and ds,t ). Further, for GreedyBiDir we have that if s is
an intermediate node in the routing path from some node s′

to t, then the same probability bound holds for the time until
the message reaches t from s, conditionally on the path up
to s.

This result implies the O(log2 n) bound of Theorem 1
for GreedyUniDir, and for GreedyBiDir when 0 ≤ α <

2 or α ≥ 3: by choosing β = 1/ds,t , Lemma 1 gives that
the routing time is O(logds,t · logn) with probability at least
1−1/ds,t , and thus the expected routing time is at most

(1−1/ds,t) ·O(logds,t · logn)+(1/ds,t) ·ds,t

= O(logds,t · logn) = O(log2 n).

Proof of Lemma 1 The proof structure follows that of [24,
Theorem 2]. Denote by di the distance between the node that
has the message after i steps and the target t. We will prove
the following claim below.

Claim 1 Pr[di+1 ≤ di/2 | di] = Ω(1/ lnn).
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We use Claim 1 to bound the expectation of di+1. We
have

E[di+1 | di]≤ Pr(di+1 ≤ di/2 | di) ·di/2

+(1−Pr(di+1 ≤ di/2 | di)) ·di

= (1−Pr(di+1 ≤ di/2 | di)/2) ·di

≤ (1− c/ lnn) ·di,

for some constant c > 0, by Claim 1. Taking now the uncon-
ditional expectation we obtain that E[di+1] ≤ (1− c/ lnn) ·
E[di]. Applying this inequality repeatedly yields E[di] ≤
(1− c/ lnn)i ·d0, and thus for t∗ = (lnd0 + lnβ−1) · lnn/c,

E[dt∗ ]≤ (1− c/ lnn)(lnd0+lnβ−1)·lnn/cd0

≤ e−(lnd0+lnβ−1)d0 = β .

Markov’s Inequality then gives Pr(dt∗ ≥ 1)≤ E[dt∗ ]/1≤ β .
Hence, the probability that the target is reached in at most t∗

steps is Pr(dt∗ = 0) = 1−Pr(dt∗ ≥ 1)≥ 1−β .
It remains to prove Claim 1. Fix the i-th node ui in the

routing path, and thus its distance di from target t. For the
case of GreedyUniDir, the out-contacts of ui do not de-
pend on the routing path up to node ui. Since ui has at least
one out-contact, the probability that ui→ Bt(di/2) is lower
bounded by the probability of the same event in K(`,n,1):

Pr(ui→ Bt(di/2)) ≥ PrK(`,n,1)(ui→ Bt(di/2))
Obs.1(c)
= Θ(1/ lnn),

and thus Pr(di+1 ≤ di/2) = Ω(1/ lnn).
For the case of GreedyBiDir, we rely on the in-contacts

of ui to prove the claim rather than its out-contacts. Fix the
path u0 . . .ui up to node ui. For each node v ∈ Bt(di/2), we
have v 6→ {u0, . . . ,ui−1} and thus from Observation 2(d),
Pr(v→ ui)≥ PrK(`,n,1)(v→ ui). It follows

Pr(Bt(di/2)→ ui) ≥ PrK(`,n,1)(Bt(di/2)→ ui)

Obs.1(g)
≥ PrK(`,n,1)(ui→ Bt(di/2))/2

Obs.1(c)
= Θ(1/ lnn),

and thus Pr(di+1 ≤ di/2) = Ω(1/ lnn). This completes the
proof of Claim 1 and Lemma 1. ut

4.2 Upper bound for GreedyBiDir for 2 < α < 3

In this section we prove an upper bound of O(logα−1 n ·
log logn) on the expected routing time of GreedyBiDir, for
any pair of nodes s, t in SW(`,n,α), when 2 < α < 3.

For this range of values for α , the normalizing factor
ν of distribution qk = Pr(Cu = k) for choosing the number
of out-contacts of a node is ν = ∑i≥2

(
i1−α − i−α

)
=Θ(1).

Thus qk = Θ(k−α) for k ≥ 2. Further, for k = 1 we have

q1 =Θ(1), because since the expectation is 2, it follows that
q1 ≥ q3 =Θ(1). Therefore,

qk =Θ(k−α), for all k ≥ 1.

We observe that as soon as the message reaches a node
within distance d∗ = 2logα−2 n from target t, Lemma 1 yields
an upper bound of O(logd∗ · logn) = O(logα−1 n) on the re-
maining steps until t is reached with probability 1− 1/d∗.
From this, it follows that the expected number of remaining
steps is also O(logα−1 n). Thus, we just need to bound the
expected number of steps from source s until some node v
with d(v, t)≤ d∗ is reached.

Let di denote the distance between the node that has the
message after i steps and target t. We will prove the follow-
ing key claim which lower bounds the probability that the
distance to the target is halved in the next three steps.

Claim 2 For any i ≤ log3 n, if di ≥ d∗/2 then
Pr(di+3 ≤ di/2 | di . . .d0) = Ω

(
logdi/ logα−1 n

)
.

Note that this bound requires that at most log3 n steps
have been taken.5 Because of that, we will bound first
an auxiliary quantity we define now. Let T ′ be the min-
imum between log3 n and the earliest step i for which
di ≤ d∗, i.e., T ′ = min{log3 n, min{i : di ≤ d∗}}. We
bound E[T ′] as follows. For 0 ≤ k ≤ dlog(n/d∗)e, let ik =
min{log3 n, min{i : di ≤ n/2k}}. Then T ′ ≤ idlog(n/d∗)e.
From Claim 2 it follows that

E[ik+1− ik] = 3/Ω

(
log(n/2k+1)/ logα−1 n

)
= O

(
logα−1 n

logn− (k+1)

)
.

Applying the above result repeatedly yields

E[ik] = O

(
∑

1≤ j≤k

logα−1 n
logn− j

)
= O

(
logα−1 n · ln logn

)
,

and thus

E[T ′] = O
(
logα−1 n · ln logn

)
.

If now T = min{i : di ≤ d∗}, then T and T ′ are identical
expect for when T > log3 n. Hence, T ′ ≥ T · 1T≤log3 n, and
we have

E[T ] = E[T ·1T≤log3 n]+E[T ·1T>log3 n]

≤ E[T ′]+n ·Pr(T > log3 n).

From Lemma 1 for β = 1/n, it follows T = O(log2 n) <
log3 n with probability 1− 1/n, and thus Pr(T > log3 n) <
1/n. From this and the inequality above, E[T ] ≤
O
(
logα−1 n · ln logn

)
+n · (1/n) = O

(
logα−1 n · ln logn

)
.

It remains to prove Claim 2.

5 In fact, it holds for any i that is at most a polylogarithmic function
of n, but for our purposes it suffices to assume that i≤ log3 n.
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Proof of Claim 2 We fix the path u0 . . .ui in the first i steps.
Further, we reveal whether or not ui is an out-contact of ui−1.
If ui is not an out-contact of ui−1 and the two nodes are not
grid-neighbors, then ui must be an in-contact of ui−1, and
this changes significantly the a priori probability distribu-
tion of Cui . As we explain later, we avoid handling this case
directly; instead we reduce this case to the case we describe
next by consider one extra step.

We study now the case in which either ui is an out-
contact of ui−1, or the two nodes are grid-neighbors. We
describe four events such that if all of them occur, then
it follows that di+2 ≤ di/2. Next we show that the proba-
bility of the intersection of these events is lower bounded
by Ω

(
logdi/ logα−1 n

)
, and thus, the same bound holds for

Pr(di+2 ≤ di/2).

Roughly speaking, the events we consider say that the
next node ui+1 is an in-contact of ui with approximately logn
out-contacts, which is at distance between di/2 and di−

√
di

from target t, and has an out-contact within distance di/2
from t. Formally, let R := Bt(di−

√
di)\Bt(di/2) and D :=

{lnn, . . . ,2lnn}. We define the following events.

E1: there is some node v∈ R with Cv ∈D for which we have
v→ ui; let z be the node that is closest to t among the
nodes v that satisfy this event;

E2: z→ Bt(di/2);
E3: for all v ∈ R with Cv /∈ D we have v 6→ ui;
E4: ui 6→ R.

It is immediate that the intersection of the above four events
implies di+2 ≤ di/2: If ui has some in- or out-contact in
Bt(di/2) then we have di+1 ≤ di/2. Otherwise, from events
E1, E3, and E4, it follows that ui will forward the message
to node z. And by E2, node z will subsequently forward the
message to a node in Bt(di/2).

We now bound the probability of E1∧E2∧E3∧E4. Since
E4 is independent of the other events,

Pr(E1∧E2∧E3∧E4)

= Pr(E4) ·Pr(E3) ·Pr(E1 | E3) ·Pr(E2 | E1,E3).

We chose the order of conditioning to simplify the calcu-
lations below. We show next that each of the probabilities
Pr(E4), Pr(E3), and Pr(E2 | E1,E3) is lower bounded by a
positive constant, and Pr(E1 | E3) = Ω

(
logdi/ logα−1 n

)
. It

follows that Pr(E1∧E2∧E3∧E4)=Ω
(
logdi/ logα−1 n

)
, and

hence the same lower bound applies to Pr(di+2 ≤ di/2).

Proof that Pr(E4) = Ω(1): Recall that we have fixed the
path u0 . . .ui so far. For node ui we have ui 6→ {u0, . . . ,ui−2}.

We remove this conditioning using Observation 2(b),

Pr(E4) = 1−Pr(ui→ R)
Obs.2(b)
≥ 1− (1+o(1)) ·PrK(`,n,2)(ui→ R)

= PrK(`,n,2)(ui 6→ R)−o(1)

=
(
PrK(`,n,1)(ui 6→ R)

)2−o(1).

We will argue now that PrK(`,n,1)(ui 6→ R) = Ω(1), and thus
Pr(E4)=Ω(1), as desired. Let t ′ be a node at distance

√
di/2

from ui. The ball B := Bt ′(
√

di/2−1) does not overlap with
R, hence

PrK(`,n,1)(ui→ B)+PrK(`,n,1)(ui→ R)≤ 1. (4)

We have PrK(`,n,1)(ui → B) = Ω(lndi/ lnn) from Observa-
tion 1(d), and

PrK(`,n,1)(ui→ R)≤ PrK(`,n,1)(ui→ Bt(di−1))

= O(lndi/ lnn),

from the same observation. Thus, PrK(`,n,1)(ui → B) ≥ c ·
PrK(`,n,1)(ui → R), for some constant c > 0. From this and
Eq. (4) above, it follows PrK(`,n,1)(ui→ R)≤ 1/(1+c), and
thus PrK(`,n,1)(ui 6→ R)≥ c/(1+ c) = Ω(1).

Proof that Pr(E3) = Ω(1): We will show a stronger re-
sult instead, that Pr(U 6→ ui) = Ω(1) for U := Bt(dui,t −1).
For each node v ∈U we have v 6→ {u0, . . . ,ui−1}, and from
Observation 2(c),

Pr(v→ ui)≤ PrK(`,n,3)(v→ ui).

From this it follows that Pr(U → ui) ≤ PrK(`,n,3)(U → ui),
and thus

Pr(U 6→ ui)≥ PrK(`,n,3)(U 6→ ui)

=
(
PrK(`,n,1)(U 6→ ui)

)3 Obs.1(h)
= Ω(1).

Proof that Pr(E2 | E1,E3) = Ω(1): Fix z and the num-
ber Cz ≥ lnn of its out-contacts. We must lower bound by
Ω(1) the probability that z→ Bt(di/2), given that z→ ui
and z 6→ {u0, . . . ,ui−1}. First we observe that we can drop
the assumption that z 6→ {u0, . . . ,ui−1}, since it can only in-
crease the probability for each of the Cz long-range edges
of u to point to a given node v 6∈ {u0, . . . ,ui−1}, and thus
to Bt(di/2). Then, from Observation 2(e) we can also drop
assumption z→ ui, and assume instead that z has one out-
contact fewer, i.e., at least lnn−1 out-contacts. From Obser-
vation 1(c), each of these out-contacts belongs to Bt(di/2)⊇
Bt(dz,t/2) with probability at least Θ(1/ logn). Hence the
probability that at least one of them belongs to Bt(di/2) is
lower bounded by

1−
(
1−Ω(1/ lnn)

)lnn−1 ≥ 1− e−Ω(1) = Ω(1).
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Proof that Pr(E1 | E3) = Ω
(
logdi/ logα−1 n

)
: Roughly

speaking, we show that for each v ∈ R, the probability
of the event that v → ui ∧Cv ∈ D equals pd(v,ui) times
Ω(1/ logα−2 n), and combine this with the result that in
K(`,n,1) we have R→ ui with probability Ω(lndi/ lnn).

We start by observing that conditioning on event E3 (i.e.,
ui has no in-contacts v ∈ R with Cv /∈ D) increases the prob-
ability of event E1 (i.e., ui has some in-contact v ∈ R with
Cv ∈ D), as it increases the probability that Cv ∈ D for a
given v ∈ R. Thus, we have Pr(E1 | E3)≥ Pr(E1), and it suf-
fices to lower bound Pr(E1). Let H = {u0, . . . ,ui−1} be the
set of the first i nodes in the routing path. For each v ∈ R we
have v 6→ H, and from Bayes’ Rule,

Pr(v→ ui∧Cv ∈ D | v 6→ H)

=
Pr(v 6→ H | v→ ui, Cv ∈ D)

Pr(v 6→ H)

·Pr(v→ ui |Cv ∈ D) ·Pr(Cv ∈ D)

≥ Pr(v 6→ H | v→ ui, Cv = 2logn)
1

·Pr(v→ ui |Cv = logn) · (|D| ·q2logn),

where for the last relation we used that D= {lnn, . . . ,2lnn},
and for each probability in the numerator we chose the value
from D that minimizes this probability. Next we bound the
two probabilities in the last two lines above. We have

Pr(v→ H | v→ ui,Cv = 2logn)≤ Pr(v→ H |Cv = 2logn)

≤ 2logn · |H| · p√di

≤ 2logn · |H| · p√d∗/2

= o(1),

where for the inequality in the second line we used that the
distance of v from any node in H is at least

√
di, by R’s

definition. Also

Pr(v 6→ ui |Cv = logn) = (1− pd(v,ui))
logn

≤ e− logn·pd(v,ui)

≤ 1− (1−o(1)) · logn · pd(v,ui),

where for the last equality we used the facts that e−x ≤
1−x+x2/2 and logn · pd(v,ui) = o(1). Combining the above
yields

Pr(v→ ui∧Cv ∈ D | v 6→ H)

≥ (1−o(1)) ·
(
(1−o(1)) · logn · pd(v,ui)

)
· (|D| ·q2logn)

= ρ · pd(v,ui),

where ρ := (1−o(1))2 · logn · |D| ·q2logn =Ω
(
1/ logα−2 n

)
.

From this it follows that the probability of the event ¬E1 that

ui has no in-contacts v ∈ R with Cv ∈ D is

Pr(¬E1)≤∏
v∈R

(1−ρ · pd(v,ui))

≤∏
v∈R

e−ρ·pd(v,ui) = e−ρ ∑v∈R pd(v,ui) .

We compare this with the probability inK(`,n,1) that ui has
no in-contacts v ∈ R,

PrK(`,n,1)(R 6→ ui) = ∏
v∈R

(1− pd(v,ui))

≥∏
v∈R

e−pd(v,ui)
/2 = e−(1/2)·∑v∈R pd(v,ui) ,

where for the inequality we used the fact that 1−x≥ e−x−x2

when 0≤ x≤ 1/2, and pd(v,ui) = o(1). Further, we have

PrK(`,n,1)(R→ ui)
Obs.1(g)
≥ PrK(`,n,1)(ui→ R)/2

= PrK(`,n,1)(ui→ Bt(di−
√

di))/2

−PrK(`,n,1)(ui→ Bt(di/2))/2
Obs.1(b)
=

&(c)
Ω(lndi/ lnn)−Θ(1/ lnn)

= Ω(lndi/ lnn).

Combining the last three results above yields

Pr(¬E1)≤
(

Pr
K(`,n,1)

(R 6→ ui)
)2ρ

≤ (1−Ω(lndi/ lnn))2ρ ≤ e−Ω(ρ lndi/ lnn),

and substituting the value of ρ gives

Pr(¬E1)≤ e−Ω(lndi/ lnα−1 n) = 1−Ω(lndi/ lnα−1 n).

Thus, Pr(E1) = Ω(lndi/ lnα−1 n), as desired.

We have now completed the proof for the case in which
either ui is an out-contact of ui−1, or the two nodes are grid-
neighbors. We have shown for this case that

Pr(di+2 ≤ di/2) = Ω
(
logdi/ logα−1 n

)
.

We consider now the case in which ui is neither an out-
contact nor a grid-neighbor of ui−1, and thus it is an in-
contact of ui−1. Fix the out-contacts of ui, and let w be the
out-contact or grid-neighbor of ui that is closest to t. If dw,t ≤
di/2 then di+1 ≤ di/2 as desired; so, we assume that dw,t >

di/2. The probability that ui has no in-contacts in Bt(dw,t −
1) is Pr(Bt(dw,t−1) 6→ ui) = Ω(1); the proof of this result is
the same as that for Pr(E3) =Θ(1), described earlier. Given
now that Bt(dw,t − 1) 6→ ui, the next node ui+1 in the path
is node w, and we can apply the results of the previous case
to obtain that Pr(di+3 ≤ di+1/2) =Ω

(
logdi+1/ logα−1 n

)
=

Ω
(
logdi/ logα−1 n

)
, as di+1 = dw,t > di/2. It follows that

Pr(di+3 ≤ di/2) ≥ Θ(1) ·Ω
(
logdi/ logα−1 n

)
. This com-

pletes the proof of this case, and the proof of Claim 2. ut
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4.3 Upper bound for GreedyBiDir for α = 2

In this section we prove an upper bound of O(log4/3 n) on
the expected routing time of GreedyBiDir, for any pair of
nodes s, t in SW(`,n,2). The analysis is similar to that for
SW(`,n,α) with 2 < α < 3, in Section 4.2. Arguments that
are the same in both proofs are not repeated here.

For α = 2, the normalizing factor ν of the probability
distribution qk = Pr(Cu = k) is ν = ∑2≤i≤kmax

(
i−1− i−2

)
=

Θ(lnkmax) =Θ(lnn), and thus

qk =

Θ

(
1

k2 lnn

)
, if k ≥ 2;

1−Θ
( 1

lnn

)
, if k = 1.

As in Section 4.2, we use Lemma 1 to argue that the
expected number of remaining steps when the message has
reached a node within distance d∗ = 2log1/3 n of t, is bounded
by O(logd∗ · logn) = O(log4/3 n). Next we bound the ex-
pected number of steps from source s until some node v with
d(v, t)≤ d∗ is reached.

Led di be the distance between the node that has the mes-
sage after i steps and target t. The next result is the analogue
to Claim 2; we give its proof later.

Claim 3 Let ε be an arbitrary constant such that 1 −
1/(3`) < ε < 1. If i ≤ log3 n and di ≥ (d∗)ε , then
Pr(di+3 ≤ dε

i | di . . .d0) = Ω
(
log2 di/ log2 n

)
.

As before we let T ′ = min{log3 n, min{i : di ≤ d∗}},
and we bound E[T ′] as follows. For each 0 ≤ k ≤ k∗ :=⌈

log1/ε

(
logn

logd∗

)⌉
, let ik = min{log3 n, min{i : di ≤ nεk}}.

Hence, T ′ ≤ ik∗ . From Claim 3 then it follows that

E[ik+1− ik] = 3/Ω

(
log2

(
nεk+1

)
/ log2 n

)
= O

(
ε
−2(k+1)

)
.

Applying the above result repeatedly yields

E[ik] = O

(
∑

1≤ j≤k
ε
−2k

)
= O

(
ε
−2k
)
,

and thus

E[T ′]≤ E[ik∗ ] = O
(

ε
−2log1/ε

(
logn

logd∗
))

= O

((
logn
logd∗

)2
)

= O

((
logn

log1/3 n

)2
)

= O
(

log4/3 n
)
.

Letting now T = min{i : di ≤ d∗}, we argue that E[T ] ≤
E[T ′] + O(1) in exactly the same way as in Section 4.2.
Hence, we obtain E[T ] = O

(
log4/3 n

)
.

It remains to prove Claim 3.

Proof of Claim 3 The proof is very similar to that of
Claim 2. As before, we fix the path u0 . . .ui in the first i
steps, and we consider first the case in which either ui is
an out-contact of ui−1, or the two nodes are grid-neighbors.
We consider the same four events we used in the proof
of Claim 2, but for different sets R and D. We let R :=
Bt(di−

√
di)\Bt(dε

i ) and D := {dε1
i , . . . ,dε2

i }, where ε1 and
ε2 are arbitrary constants with 1/3 < ε1 < ε2 < 1/2. Then,

E1: there is some node v∈ R with Cv ∈D for which we have
v→ ui; let z be the node that is closest to t among the
nodes v that satisfy this event;

E2: z→ Bt(dε
i );

E3: for all v ∈ R with Cv /∈ D we have v 6→ ui;
E4: ui 6→ R.

By the same reasoning as in the proof of Claim 2, we have
that the probability of di+2 ≤ dε

i is lower bounded by the
probability of the intersection of the four events above, and

Pr(E1∧E2∧E3∧E4)

= Pr(E4) ·Pr(E3) ·Pr(E1 | E3) ·Pr(E2 | E1,E3).

We show that Pr(E4), Pr(E3), and Pr(E2 | E1,E3) are Ω(1), as
before, and that Pr(E1 | E3) = Ω

(
log2 di/ log2 n

)
. It follows

that Pr(E1 ∧ E2 ∧ E3 ∧ E4) = Ω
(
log2 di/ log2 n

)
, and hence

the same bound applies to Pr(di+2 ≤ dε
i ).

Proof that Pr(E4) = Ω(1) and Pr(E3) = Ω(1): The
derivations of these two bounds described in the proof for
Claim 2 apply also in the current setting without changes.

Proof that Pr(E2 | E1,E3) = Ω(1): Fix z and Cz ≥ dε1
i .

From the same argument as in the proof for Claim 2, it
suffices to lower bound by Ω(1) the probability that z→
Bt(dε

i ) assuming that z has at least Cz − 1 ≥ dε1
i − 1 out-

contacts (without the assumptions that z → ui and z 6→
{u0, . . . ,ui−1}). From Observation 1(b) it follows that each
of these out-contacts belongs to Bt(dε

i ) with probability

Ω

((
dε

i
dz,t

)`

/ lnn

)
≥Ω

((
dε

i
di

)`

/ lnn

)
= Ω

(
d−(1−ε)`

i / lnn
)
.

Hence the probability that at least one of the out-contacts
belongs to Bt(dε

i ) is lower bounded by

1−
(

1−Ω
(
d−(1−ε)`/lnn

))d
ε1
i −1
≥ 1− e−Ω

(
d

ε1
i d−(1−ε)`

i /lnn
)

= 1−o(1),

where the last relation holds because ε1 > 1/3 > (1− ε)`.

Proof that Pr(E1 | E3) = Ω
(
log2 di/ log2 n

)
: As ex-

plained in the proof for Claim 2, we have Pr(E1 | E3) ≥
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Pr(E1) and thus it suffices to lower bound Pr(E1). For each
node v ∈ R and for H = {u0, . . . ,ui−1} we have

Pr(v→ ui∧Cv ∈ D | v 6→ H)

= ∑
k∈D

Pr(v→ ui∧Cv = k | v 6→ H)

= ∑
k∈D

(
Pr(v 6→ H | v→ ui, Cv = k)

Pr(v 6→ H)

·Pr(v→ ui |Cv = k) ·Pr(Cv = k)
)
.

For k ∈ D,

Pr(v→ H | v→ ui, Cv = k)

≤ Pr(v→ H |Cv = k)≤ |H| · kp√di

= O
(

log3 n ·dε2
i /
(

lnn ·
√

di
`
))

= o(1),

where the last relation holds because ε2 < 1/2≤ `/2. Also

Pr(v 6→ ui |Cv = k) = (1− pd(v,ui))
k

≤ e−kpd(v,ui) = 1− (1−o(1)) · kpd(v,ui),

where for the last equality we used the facts that e−x ≤
1− x+ x2/2 and kpd(v,ui) ≤ kp√di

= o(1). Finally, we have
Pr(Cv = k) = qk = Θ(1/(lnn · k2)). Combining the above
yields

Pr(v→ ui∧Cv = k | v 6→ H)

≥ ∑
k∈D

(1−o(1)) · (1−o(1)) · kpd(v,ui) ·qk

1

= ρ · pd(v,ui),

where

ρ := (1−o(1)) ∑
k∈D

kqk =Θ

(
∑
k∈D

1
lnn · k

)

=Θ

(
lndε2

i − lndε1
i

lnn

)
=Θ

(
lndi

lnn

)
.

In the proof of Claim 2, we showed that Pr(¬E1) ≤
e−Ω(ρ lndi/ lnn). Substituting ρ’s value gives

Pr(¬E1)≤ e−Ω(ln2(di)/ ln2 n) = 1−Ω(ln2(di)/ ln2 n).

Thus, Pr(E1) = Ω(ln2(di)/ ln2 n).

This completes the proof for the case in which either ui is
an out-contact of ui−1, or the two nodes are grid-neighbors.
The proof of the complementary case, in which ui is neither
an out-contact nor a grid-neighbor of ui−1, follows from the
previous case as explained in the proof of Claim 2.

We have thus finished the proof of Claim 3. ut

5 Proof of the lower bounds

We prove now the lower bounds of Theorem 2. For
GreedyUniDir we consider the logarithm of the distances
d0,d1, . . . , where di is the distance to the target after i steps.
We show that the expected decrease of this quantity in a step
is µ =O(1/ logn), and then apply Wald’s Theorem to obtain
a lower bound of Ω(logd0/µ) on the expected routing time.

For GreedyBiDir we consider a slightly difference se-
quence of distances, in order to decrease the dependency on
the past. Roughly speaking, if the node ui that has the mes-
sage after i rounds is not an in-contact of ui−1 then, as be-
fore, di is the distance between ui and the target. But if ui
is an in-contact of ui−1 then di is instead the minimum dis-
tance of ui and its out-contacts from the target. Similar to
GreedyUniDir, we bound the expected decrease in the log-
arithm of this distance in a step, and then apply Wald’s The-
orem. The bound we establish on this decrease is in terms
of the distribution of di, i.e., Pr(di ≤ r | di−1 = δ ). To bound
this probability we must bound the probability of the event
that ui is an in-contact of ui−1 and has an out-contact at dis-
tance at most r from the target. Bounding this “two-hop”
probability is a main component of our analysis.

In Section 5.1 we describe our proof technique. In Sec-
tion 5.2 we show the lower bound for GreedyUniDir. In
Section 5.3 we define the sequence of distances to be used
in the analysis of GreedyBiDir, and then derive the lower
bounds for GreedyBiDir in Sections 5.4–5.8.

5.1 The method

In this section we describe the steps that we follow to prove
the lower bounds. These steps, or slight variations of them,
are used for all the cases of the theorem, except if stated
otherwise.

Let s be the source and t the target nodes, and let ui be
the node that has the message after the first i steps of routing.

Step 1 We describe a sequence d0,d1, . . . of distances to
target t, such that d0 = d(s, t), and di ≤ d(ui, t) for each
i ≥ 1. Hence, the routing time for s, t is lower bounded by
min{i : di = 0}. For the case of GreedyUniDir we define di
simply as di = d(ui, t). For GreedyBiDir the definition of
di is a bit more involved and is given in Section 5.3.

Step 2 We bound the distribution of di. Specifically, we
compute a function f (r,δ ) such that for any δ > lnn and
1≤ r ≤ δ −1 we have

Pr(di ≤ r | di−1 = δ )≤ f (r,δ ).

Step 3 We bound the expected decrease in a step, of the log-
arithm of distance di. Let

li =

{
lndi, if di ≥ 1;
0, if di = 0.
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Further, for i ≥ 1, let ∂ li be the decrease of this quantity in
step i, i.e.,

∂ li = li−1− li =

{
ln(di−1/di), if di ≥ 1;
ln(di−1), if di−1 > di = 0.

We compute some µ > 0 such that if di−1 > lnn then

E[∂ li | di−1]≤ µ.

We use the next claim, which bounds E[∂ li | di−1] in terms
of function f from Step 2.

Claim 4 If δ > lnn then E[∂ li | di−1 = δ ] ≤
∑

1≤r≤δ−1
f (r,δ )/r.

Proof Suppose di−1 = δ . We have

E[∂ li] = ∑
1≤r≤δ−1

Pr(di = r) · ln(δ/r)+Pr(di = 0) · ln(δ )

= ∑
1≤r≤δ−1

(
Pr(di ≤ r)−Pr(di ≤ r−1)

)
· ln(δ/r)

+Pr(di = 0) · ln(δ )
= ∑

1≤r≤δ−1
Pr(di ≤ r) · ln(δ/r)

− ∑
1≤r≤δ−1

Pr(di ≤ r−1) · ln(δ/r)

+Pr(di = 0) · ln(δ )
= ∑

1≤r≤δ−1
Pr(di ≤ r) · ln(δ/r)

− ∑
2≤r≤δ−1

Pr(di ≤ r−1) · ln(δ/r)

= ∑
1≤r≤δ−1

Pr(di ≤ r) · ln(δ/r)

− ∑
1≤r≤δ−2

Pr(di ≤ r) · ln(δ/(r+1))

= ∑
1≤r≤δ−1

Pr(di ≤ r) · ln(δ/r)

− ∑
1≤r≤δ−1

Pr(di ≤ r) · ln(δ/(r+1))

= ∑
1≤r≤δ−1

Pr(di ≤ r) · ln((r+1)/r)

≤ ∑
1≤r≤δ−1

Pr(di ≤ r) · (1/r). ut

Step 4 We lower bound the expected number of steps until
we have di ≤ lnn, by using the bound E[∂ li | di−1] ≤ µ ob-
tained in Step 3 and Wald’s Theorem. Let Ts,t = min{i : di ≤
lnn}, and consider the sum ∑1≤i≤Ts,t ∂ li = l0− lTs,t . By defi-
nition, dTs,t ≤ lnn. Thus lTs,t ≤ ln lnn, and

∑
1≤i≤Ts,t

∂ li ≥ ln(d0/ lnn).

Further, since E[∂ li | i≤ Ts,t ] = E[E[∂ li | di−1] | i≤ Ts,t ]≤ µ

from Step 3, Wald’s Theorem gives

E

[
∑

1≤i≤Ts,t

∂ li

]
≤ E[Ts,t ] ·µ.

From the two inequalities above it follows

E[Ts,t ]≥ ln(d0/ lnn)/µ. (5)

Step 5 We observe that for a uniformly random pair s, t, it
holds that d(s, t) = nΩ(1) with probability 1− o(1). Then
from the result of Step 4 it follows that the expected routing
time T for a random pair s, t is

E[T ] = Ω(ln(n)/µ). (6)

This step is not used for the case of GreedyBiDir when
α ≤ 2, as in this case we bound the expected routing time
for the worst-case pair only.

5.2 Lower bound for GreedyUniDir

We prove a lower bound of Ω(log2 n) on the expected
routing time of GreedyUniDir for a random pair s, t in
SW(`,n,α). This bound holds for all α ≥ 0.

We follow the steps listed in Section 5.1. For δ > lnn
and 1≤ r ≤ δ −1, we define

f (r,δ ) =

{
c · ln

(
δ

δ−r

)
/ lnn, if 1≤ r ≤ δ −2;

1, if r = δ −1,

for a constant c > 0. We argue now that if c is sufficiently
large, then Pr(di ≤ r | di−1 = δ ) ≤ f (r,δ ) as required (cf.
Step 2): Fix node ui−1 and assume that di−1 = δ . Suppose
also that r 6= δ − 1 (because f (δ − 1,δ ) = 1, and thus the
desired inequality holds for r = δ −1). We have

Pr(di ≤ r) = Pr(ui→ Bt(r))
Obs.2(a)
≤ 2PrK(`,n,1)(ui→ Bt(r))

Obs.1(a)
= O

(
ln
(

δ

δ−r

)
/ lnn

)
. (7)

Therefore, Pr(di≤ r)≤ f (r,δ ) for a large enough constant c.
Next we use Claim 4 to bound E[∂ li | di−1 = δ ] (cf.

Step 3).

E[∂ li | di−1 = δ ]≤ ∑
1≤r≤δ−1

f (r,δ )/r

= ∑
1≤r≤δ−2

c
r
· ln
(

δ

δ−r

)
/ lnn +

1
δ −1

.
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To bound the last sum we observe that

∑
1≤r≤δ/2

1
r
· ln
(

δ

δ−r

)
= ∑

1≤r≤δ/2

1
r
· ln
(

1+ r
δ−r

)
≤ ∑

1≤r≤δ/2

1
r
· r

δ − r

≤ ∑
1≤r≤δ/2

1
δ −δ/2

= O(1); (8)

∑
δ/2<r≤δ−2

1
r
· ln
(

δ

δ−r

)
≤ 1

δ/2
· ∑

δ/2<r≤δ−2
ln
(

δ

δ−r

)
≤ 1

δ/2
· ln

(
δ dδ/2e

dδ/2e!

)

≤ 1
δ/2
· ln

(
δ dδ/2e

(δ/2e)dδ/2e

)
(by Stirling’s Approximation)

≤ 1
δ/2
·O(δ ) = O(1). (9)

It follows that E[∂ li | di−1 = δ ] = O(c/ lnn)+1/(δ −1) =
O(1/ lnn).

We have thus shown that if di−1 > lnn then E[∂ li |
di−1] ≤ µ for some µ = O(1/ lnn). We can now apply
Eq. (6) (cf. Step 5) to conclude that the expected routing
time for a random pair is E[T ] = Ω(ln(n)/µ) = Ω(ln2 n).

5.3 Distance sequence for GreedyBiDir

In the analysis of GreedyBiDir we will use a differ-
ent definition for the distances di than in the analysis of
GreedyUniDir, where di was just the distance between
node ui that has the message after i steps and target t.

Below we will write d(U, t) for a node set U to denote
the minimum distance between some node from U and t,
i.e., d(U, t) = minv∈U d(v, t). Further, by Nout(v) we denote
the set of out-contacts of v. For each i≥ 0, let

ri =

{
d ({ui}∪Nout(ui), t) , if ui→ ui−1;
d (ui, t) , otherwise;

i.e., if ui is an in-contact of the previous node in the rout-
ing path, then ri is the minimum distance of ui and its out-
contacts from the target; otherwise, ri is just the distance of
ui from the target. Then we define d0 = r0 = d(s, t), and for
i≥ 1,

di = min
{

ri,

⌊(
1− 1

lnn

)
·di−1

⌋}
.

The second quantity inside min{} ensures that di ≤ di−1−1
when di−1 > 0, and also that di = 0 after at most i =

O(log2 n) steps. The latter is useful for the analysis because
when the set of nodes visited grows very large it affects sig-
nificantly the edge distribution of nodes not visited yet.

From the definitions above it is immediate that di ≤ ri ≤
d(ui, t). Hence, for any node pair s, t the routing time of
GreedyBiDir is lower bounded by min{i : di = 0}. We have
thus completed Step 1 of the analysis for GreedyBiDir (cf.
Section 5.1). For Step 2 we must bound the distribution of
di; we use the next result.

Claim 5 For any b≥ δ > lnn and 1≤ r <
⌊(

1− 1
lnn

)
δ
⌋

we
have

Pr(di ≤ r | di−1 = δ , d(ui−1, t) = b)

= O
(

ln
(

δ

δ−r

)
/ lnn + f2-hop(r,b)

)
,

where

f2-hop(r,b) :=
b−1

∑
j=r+1

∑
k≥2

(
min

{
qk j`−1,

kqk

lnn · (b− j)

}
·min

{
1, k ln

(
j

j−r

)
/ lnn

})
.

In the above upper bound on the probability of di ≤ r,
the O

(
ln
(

δ

δ−r

)
/ lnn

)
term bounds the probability that ui

belongs to Bt(r); this term is the same as the bound we
used for the case of GreedyUniDir (cf. Eq. (7)). The term
O( f2-hop(r,b)) bounds the probability that ui → ui−1 and
some out-contact of ui belongs to Bt(r). Intuitively, in the
definition of f2-hop(r,b), the quantities qk j`−1 and kqk

lnn·(b− j)
are upper bounds on the probability of the event that ui−1
has some in-contact v with Cv = k on the sphere St( j). The
quantity k ln

( j
j−r

)
/ lnn then bounds the probability that a

given node v∈ St( j) with Cv = k has an out-contact in Bt(r).
In the following sections we will bound f2-hop for the dif-
ferent values of α . Bounds for f2-hop that are larger than
O
(

ln
(

δ

δ−r

)
/ lnn

)
will yield lower bounds for the routing

time that are smaller than Ω(ln2 n).

Proof of Claim 5 We fix the path u0 . . .ui−1, and also the out-
contacts and in-contacts of each of the nodes u0, . . . ,ui−2.
Further, we reveal whether ui−1→ ui−2 holds, and if it does,
we fix the out-contacts of ui−1. From these we can also com-
pute d0, . . . ,di−1. Suppose that d(ui−1, t) = b and di−1 = δ .

First we bound the probability that ui−1 has some out-
contact in Bt(r). If ui−1→ ui−2 then this probability is zero,
as by definition in this case we have d(Nout(ui−1), t) ≥
ri−1 ≥ di−1 = δ > r. Hence, we assume that ui−1 6→ ui−2
(or i = 1). We have ui−1 6→ H := {u0, . . . ,ui−2}, and thus

Pr(ui−1→ Bt(r))
Obs.2(b)
≤ (1+o(1)) ·PrK(`,n,2)(ui−1→ Bt(r))

Obs.1(a)
= O

(
ln
( b

b−r

)
/ lnn

)
= O

(
ln
(

δ

δ−r

)
/ lnn

)
,
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where the last relation holds because δ ≤ b and the function
x/(x− r) is decreasing for x > r.

Next we establish the same bound for the probability that
ui−1 has some in-contact in Bt(r). For each v ∈ Bt(r) we
have v 6→ H, and from Observation 2(c), Pr(v → ui−1) ≤
PrK(`,n,3)(v→ ui−1). From this it follows that Pr(Bt(r)→
ui−1)≤ PrK(`,n,3)(Bt(r)→ ui−1), and thus

Pr(Bt(r)→ ui−1) ≤ 3PrK(`,n,1)(Bt(r)→ ui−1)

Obs.1(g)
≤ 3PrK(`,n,1)(ui−1→ Bt(r))

Obs.1(a)
= O

(
ln
( b

b−r

)
/ lnn

)
= O

(
ln
(

δ

δ−r

)
/ lnn

)
,

as before.
Last, we bound the probability that ui−1 has some in-

contact v for which r < d(v, t) < b and v→ Bt(r). For each
node v with d(v, t)< b we have v 6→H; we make this explicit
as conditioning in the probability statements below, so that
we can remove this condition. We have

Pr(v→ ui−1 ∧Cv = k | v 6→ H)

Obs.2(b)
≤ 2Pr(v→ ui−1 ∧Cv = k)

= 2qk ·Pr(v→ ui−1 |Cv = k)

≤ 2qk ·min{1, kpd(v,ui−1)}.

Let O j,k, for r < j < b and k≥ 2, be the set of nodes v∈ St( j)
with Cv = k that are in-contacts of ui−1, i.e., O j,k = {v ∈
St( j) : Cv = k, v→ ui−1}. We have

E[|O j,k|] = ∑
v∈St ( j)

Pr(v→ ui−1 ∧Cv = k | v 6→ H)

≤ 2qk ∑
v∈St ( j)

min{1, kpd(v,ui−1)}

≤ 2qk ·min
{
|St( j)|, ∑

v∈St ( j)
kpd(v,ui−1)

}
.

Also, |St( j)|= O( j`−1) from Eq. (1) on page 7, and

∑
v∈St ( j)

pd(v,ui−1) = PrK(`,n,1)
(
ui−1→ St( j)

)
Obs.1(e)
= O

(
1

lnn·(b− j)

)
.

Therefore,

E[|O j,k|] = O
(

qk ·min
{

j`−1, k
lnn·(b− j)

})
.

We now bound the probability that a given node from O j,t
has an out-contact in Bt(r). For each v ∈ St( j), we have

Pr(v→ Bt(r) |Cv = k, v→ ui, v 6→ H)

≤ Pr(v→ Bt(r) |Cv = k, v 6→ H)

Obs.2(f)
≤ Pr(v→ Bt(r) |Cv = k)

Pr(v 6→ H |Cv = 1)
Obs.1(f)
= Pr(v→ Bt(r) |Cv = k)/(1−o(1))

≤ k ·Pr(v→ Bt(r) |Cv = 1)/(1−o(1))
Obs.1(e)
= O

(
k ln
(

j
j−r

)
/ lnn

)
.

From the two results above it follows that the expected num-
ber of in-contacts v of ui−1 for which r < d(v, t) < b and
v→ Bt(r) is upper bounded by

b−1

∑
j=r+1

∑
k≥2

E[|O j,k|] ·min
{

1, O
(

k ln
(

j
j−r

)
/ lnn

)}
= O

( b−1

∑
j=r+1

∑
k≥2

(
min

{
qk j`−1,

kqk

lnn · (b− j)

}
·min

{
1, k ln

(
j

j−r

)
/ lnn

}))
;

and by Markov’s Inequality the same upper bounds applies
to the probability that at least one such v exists.

Combining the last bound with the bounds for
Pr(Bt(r)→ ui−1) and Pr(ui−1 → Bt(r)) shown earlier, and
using the union bound completes the proof of Claim 5. ut

5.4 Lower bound for GreedyBiDir for α > 3

We prove a lower bound of Ω(log2 n) on the expected
routing time of GreedyBiDir for a random pair s, t in
SW(`,n,α), when α > 3.

First we bound the distribution of di (cf. Step 2 in Sec-
tion 5.1). We will use Claim 5, and thus we must compute
an upper bound for f2-hop. From the definition of f2-hop, it
follows that for any integers δ ,b,r for which lnn < δ ≤ b≤
d0 = d(s, t) and 1≤ r <

⌊(
1− 1

lnn

)
δ
⌋
,

f2-hop(r,b)≤
b−1

∑
j=r+1

∑
k≥2

kqk

lnn · (b− j)
· k ln

(
j

j−r

)
/ lnn

=
1

ν ln2 n

b−1

∑
j=r+1

1
b− j

· ln
(

j
j−r

)
·∑

k≥2

1
kα−2 .

Since α > 3, the normalizing factor ν is Θ(1) and
∑k≥2

1
kα−2 =Θ(1). Further, we show below that

b−1

∑
j=r+1

1
b− j

· ln
(

j
j−r

)
= O

(
lnn · ln

(
δ

δ−r

))
. (10)
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It follows

f2-hop(r,b) = O
(

ln
(

δ

δ−r

)
/ lnn

)
.

Claim 5 then yields that Pr(di ≤ r | di−1 = δ ) =

O
(

ln
(

δ

δ−r

)
/ lnn

)
, for 1 ≤ r <

⌊(
1− 1

lnn

)
δ
⌋
, which is

the same bound as the one we had for GreedyUniDir (cf.
Eq. (7) in Section 5.2). Thus the following definition for f
satisfies Step 2 for a sufficiently large constant c > 0,

f (r,δ ) =

{
c ln
(

δ

δ−r

)
/ lnn, if 1≤ r <

⌊(
1− 1

lnn

)
δ
⌋
;

1, if
⌊(

1− 1
lnn

)
δ
⌋
≤ r ≤ δ −1.

(11)

Next, from Claim 4 (cf. Step 3) it follows

E[∂ li | di−1 = δ ]≤ ∑
1≤r≤δ−1

f (r,δ )/r

= ∑
1≤r<

⌊(
1− 1

lnn

)
δ

⌋ c
r

ln
(

δ

δ−r

)
/ lnn + ∑⌊(

1− 1
lnn

)
δ

⌋
≤r≤δ−1

1
r
.

Both sums in the last line are O(1/ lnn): the first one because
of Eq. (8) and (9) in Section 5.2, and the second because it
is O

(
δ

lnn ·
1
δ

)
= O(1/ lnn). Thus, E[∂ li | di−1]≤ µ for some

µ = O(1/ lnn), and from Eq. (6) (cf. Step 5) we conclude
that the expected routing time for a random pair is E[T ] =
Ω(ln(n)/µ) = Ω(ln2 n).

Proof of Eq. (10) We distinguish two cases.
Case r ≤ δ/2:

b−1

∑
j=r+1

1
b− j

· ln
(

j
j−r

)
=

b−1

∑
j=r+1

1
b− j

· ln
(

1+ r
j−r

)
≤

b−1

∑
j=r+1

1
b− j

· r
j− r

= 2
(b+r)/2

∑
j=r+1

1
b− j

· r
j− r

(by symmetry)

≤ 2
(b+r)/2

∑
j=r+1

2
b− r

· r
j− r

(we set j = (b+ r)/2 in the

first fraction)

= O
(

r
b− r

· ln(b− r)
)

= O
(

r
δ − r

· lnn
)
.

Finally, to obtain (10) we observe that r
δ−r ≤ log

(
δ

δ−r

)
: we

have δ

δ−r = 1+ r
δ−r ≥ 2r/(δ−r), because 1+ x ≥ 2x for 0 ≤

x≤ 1, and r
δ−r ≤

δ/2
δ−δ/2 = 1.

Case r > δ/2: We break the sum into two sums, for i ≤
(b+ r)/2 and i > (b+ r)/2.

(b+r)/2

∑
j=r+1

1
b− j

· ln
(

j
j−r

)
≤

(b+r)/2

∑
j=r+1

2
b− r

· ln
(

j
j−r

)
(we set j = (b+ r)/2 in the

first fraction)

≤
(b+r)/2

∑
j=r+1

2
b− r

· lnb = O(lnb) = O(lnn).

b−1

∑
j=(b+r)/2

1
b− j

· ln
(

j
j−r

)
≤

b−1

∑
j=(b+r)/2

1
b− j

· ln
( b+r

b−r

)
(we set j = (b+ r)/2 in the

second fraction)

= O(ln(b− r)) · ln
( b+r

b−r

)
= O

(
lnn · ln

( b+r
b−r

))
.

To obtain (10) it suffices to prove that b+r
b−r ≤

(
δ

δ−r

)2: we

have b+r
b−r ≤

δ+r
δ−r and δ+r

δ−r ≤
(

δ

δ−r

)2, where the latter holds
because is equivalent to (δ + r) · (δ − r) ≤ δ 2, which is
equivalent to δ 2 − r2 ≤ δ 2. This completes the proof of
Eq. (10). ut

5.5 Lower bound for GreedyBiDir for α = 3

We prove a lower bound of Ω(log2 n/ log logn) on the ex-
pected routing time of GreedyBiDir for a random pair s, t
in SW(`,n,3).

The difference from the case of SW(`,n,α) with α > 3,
is that the bound we will show for f2-hop will be larger by a
factor of O(log logn), and consequently the bound on the
routing time will be smaller by a factor of 1/O(log logn).
To bound f2-hop we distinguish between nodes with at most
ln2 n out-contacts, and nodes with more out-contacts. From
the definition of f2-hop in Claim 5, it follows that for lnn <

δ ≤ b≤ d0 and 1≤ r <
⌊(

1− 1
lnn

)
δ
⌋
,

f2-hop(r,b)

≤
b−1

∑
j=r+1

∑
k≥2

kqk

lnn · (b− j)
·min

{
1, k ln

(
j

j−r

)
/ lnn

}
≤

b−1

∑
j=r+1

ln2 n

∑
k=2

kqk

lnn · (b− j)
· k ln

(
j

j−r

)
/ lnn

+
b−1

∑
j=r+1

∑
k>ln2 n

kqk

lnn · (b− j)
·1

=
1

ν ln2 n

b−1

∑
j=r+1

1
b− j

· ln
(

j
j−r

)
·

ln2 n

∑
k=2

1
k

+
1

ν lnn

b−1

∑
j=r+1

1
b− j

· ∑
k>ln2 n

1
k2 .
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We bound the quantities in the last two lines: ν = Θ(1);
∑

b−1
j=r+1

1
b− j ln

( j
j−r

)
= O

(
lnn · ln

(
δ

δ−r

))
, from Eq.(10);

∑
ln2 n
k=2

1
k = O(ln lnn); ∑

b−1
j=r+1

1
b− j = O(lnn); and

∑k>ln2 n
1
k2 = O(1/ ln2 n). Applying these above yields

f2-hop(r,b) = O
(

ln lnn · ln
(

δ

δ−r

)
/ lnn

)
.

From Claim 5 it follows that the same bound holds for
Pr(di ≤ r | di−1 = δ ). Thus we can define f (r,δ ) as

{
c ln lnn · ln

(
δ

δ−r

)
/ lnn, if 1≤ r <

⌊(
1− 1

lnn

)
δ
⌋
;

1, if
⌊(

1− 1
lnn

)
δ
⌋
≤ r ≤ δ −1.

Applying now Claim 4 as in Section 5.4, and observing
that the above definition of f (r,δ ) differs from the one in
Eq. (11) by an O(ln lnn) factor, we obtain that E[∂ li | di−1]≤
µ for some µ = O(ln lnn/ lnn). Finally, from Eq. (6) it fol-
lows that the expected routing time for a random pair is
E[T ] = Ω(lnn/µ) = Ω(ln2 n/ ln lnn).

5.6 Lower bound for GreedyBiDir for 2 < α < 3

We prove a lower bound of Ω(logα−1 n) on the expected
routing time of GreedyBiDir for a random pair s, t in
SW(`,n,3), when 2 < α < 3.

In this case the computations needed to bound f2-hop
are a bit more involved than in the previous two cases.
From the definition of f2-hop in Claim 5, it follows that
for lnn < δ ≤ b ≤ d0 and 1 ≤ r <

⌊(
1− 1

lnn

)
δ
⌋
, and for

k j := lnn/ln
(

j
j−r

)
,

f2-hop(r,b)

≤
b−1

∑
j=r+1

∑
k≥2

kqk

lnn · (b− j)
·min

{
1, k ln

(
j

j−r

)
/ lnn

}
=

b−1

∑
j=r+1

∑
2≤k≤k j

kqk

lnn · (b− j)
· k ln

(
j

j−r

)
/ lnn

+
b−1

∑
j=r+1

∑
k>k j

kqk

lnn · (b− j)
·1

=
1

ν ln2 n

b−1

∑
j=r+1

ln
( j

j−r

)
b− j ∑

2≤k≤k j

1
kα−2

+
1

ν lnn

b−1

∑
j=r+1

1
b− j ∑

k>k j

1
kα−1 .

We have ν = Θ(1), ∑2≤k≤k j
1

kα−2 = O(k3−α

j ), and

∑k>k j
1

kα−1 = O(1/kα−2
j ). Applying these above and plug-

ging the value of k j = lnn/ln
(

j
j−r

)
yields

f2-hop(r,b) = O

(
1

ln2 n

b−1

∑
j=r+1

ln
( j

j−r

)
b− j

·

(
lnn

ln
( j

j−r

))3−α

+
1

lnn

b−1

∑
j=r+1

1
b− j

·

(
ln
( j

j−r

)
lnn

)α−2)

= O

(
1

lnα−1 n

b−1

∑
j=r+1

1
b− j

· lnα−2
(

j
j−r

))
.

Further, we will show similar to Eq. (10) that

b−1

∑
j=r+1

1
b− j

· lnα−2
(

j
j−r

)

=


O
(

lnn ·
( r

δ

)α−2
)
, if 1≤ r ≤ δ/2;

O
(

lnn · ln
(

δ

δ−r

))
, if δ/2 < r ≤ δ −1.

(12)

Therefore, f2-hop(r,b) is
O
(( r

δ

)α−2
/ lnα−2 n

)
, if 1≤ r ≤ δ/2;

O
(

ln
(

δ

δ−r

)
/ lnα−2 n

)
, if δ/2 < r <

⌊(
1− 1

lnn

)
δ
⌋
.

From this and Claim 5, it follows Pr(di ≤ r | di−1 = δ ) ≤
f (r,δ ) for δ > lnn and 1≤ r ≤ δ −1, if f (r,δ ) is

c ·
( r

δ

)α−2
/ lnα−2 n, if 1≤ r ≤ δ/2;

c · ln
(

δ

δ−r

)
/ lnα−2 n, if δ/2 < r <

⌊(
1− 1

lnn

)
δ
⌋
;

1, if
⌊(

1− 1
lnn

)
δ
⌋
≤ r ≤ δ −1.

Then from Claim 4 we have

E[∂ li | di−1 = δ ]≤ ∑
1≤r≤δ−1

f (r,δ )/r

= ∑
1≤r≤δ/2

c
r
·
( r

δ

)α−2
/ lnα−2 n

+ ∑
δ
2 <r<

⌊(
1− 1

lnn

)
δ

⌋ c
r
· ln
(

δ

δ−r

)
/ lnα−2 n

+ ∑⌊(
1− 1

lnn

)
δ

⌋
≤r≤δ−1

1
r
.

All the three sums above are O(1/ lnα−2 n): the first one be-
cause

∑
1≤r≤δ/2

1
r
·
( r

δ

)α−2
=

1
δ α−2 ∑

1≤r≤δ/2
rα−3

=
1

δ α−2 O(δ α−2) = O(1);

the second one because of Eq. (8) and (9) in Section 5.2; and
the third one is O

(
δ

lnn ·
1
δ

)
= O(1/ lnn). Therefore, E[∂ li |
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di−1]≤ µ for some µ = O(1/ lnα−2 n), and from Eq. (6) we
conclude that the expected routing time for a random pair is
E[T ] = Ω(ln(n)/µ) = Ω(lnα−1 n).

Proof of Eq. (12) The proof is similar to that of Eq. (10).
Case r ≤ δ/2:

b−1

∑
j=r+1

1
b− j

lnα−2
(

j
j−r

)
≤

b−1

∑
j=r+1

1
b− j

·
(

r
j− r

)α−2

≤ 2
b−1

∑
j=(b+r)/2

1
b− j

·
(

r
j− r

)α−2

(the sum of the first half terms

is smaller than the other half)

≤ 2
b−1

∑
j=(b+r)/2

1
b− j

·
(

2r
b− r

)α−2

(we set j = (b+ r)/2 in the

second fraction)

= O

(
ln(b− r) ·

(
2r

b− r

)α−2
)

= O
(

lnn ·
( r

δ

)α−2
)
.

Case r > δ/2: We break the sum into two sums, for i ≤
(b+ r)/2 and i > (b+ r)/2.

(b+r)/2

∑
j=r+1

1
b− j

· lnα−2
(

j
j−r

)
≤

(b+r)/2

∑
j=r+1

2
b− r

· lnα−2 b

= O(lnα−2 b) = o(lnn),

as α < 3.

b−1

∑
j=(b+r)/2

1
b− j

· lnα−2
(

j
j−r

)
≤

b−1

∑
j=(b+r)/2

1
b− j

· lnα−2 ( b+r
b−r

)
= O(ln(b− r)) · lnα−2 ( b+r

b−r

)
= O

(
lnn · lnα−2

(
δ

δ−r

))
= O

(
lnn · ln

(
δ

δ−r

))
.

This completes the proof of Eq. (12). ut

5.7 Lower bound for GreedyBiDir for α < 2

We show that when α < 2, the expected routing time of
GreedyUniDir in SW(`,n,α) is Ω(log2 n) for some pairs
s, t.

The normalizing factor ν of distribution qk is a polyno-
mial function of n in this case. Specifically, we have ν =

∑2≤i≤kmax

(
i1−α − i−α

)
= Θ

(
(kmax)

2−α
)
, where kmax = nγ

and 0 < γ ≤ ` is a constant. It follows that the probability

1− p1 for a node v to have more than one out-contacts is
polynomially small. As a result, with probability Ω(1) the
message visits only nodes v with Cv = 1, if d(s, t) is a suffi-
ciently small polynomial in n.

The above intuition is captured by a simple bound
on f2-hop we show next. From the definition of f2-hop in
Claim 5, it follows that for lnn < δ ≤ b ≤ d0 and 1 ≤ r <⌊(

1− 1
lnn

)
δ
⌋
,

f2-hop(r,b)≤
d0−1

∑
j=r+1

kmax

∑
k=2

qk j`−1 ·1

=
d0−1

∑
j=r+1

j`−1
kmax

∑
k=2

1
νkα

= O
(

d`
0

(kmax)2−α

kmax

∑
k=2

1
kα

)
,

and thus

f2-hop(r,b) =


O
(
d`

0/(kmax)
2−α
)
, if 1 < α < 2;

O
(
d`

0 · ln(kmax)/kmax
)
, if α = 1;

O
(
d`

0/kmax
)
, if 0≤ α < 1.

Therefore, if6

d0 ≤ λ :=

(
k(2−α)/2

max

ln2 n

)1/`

= nΘ(1),

then it follows that f2-hop(r,b) = O(1/ ln2 n). From this
bound and Claim 5 we obtain that Pr(di ≤ r | di−1 = δ ) ≤
f (r,δ ), for 1≤ r < δ ≤ d0 ≤ λ , if f (r,δ ) is{

c ln
(

δ

δ−r

)
/ lnn+ c/ ln2 n, if 1≤ r <

⌊(
1− 1

lnn

)
δ
⌋
;

1, if b(1− 1
lnn )δc ≤ r ≤ δ −1.

Claim 4 then yields

E[∂ li | di−1 = δ ]≤ ∑
1≤r≤δ−1

f (r,δ )/r

= ∑
1≤r<

⌊(
1− 1

lnn

)
δ

⌋
(

c
r
· ln
(

δ

δ−r

)
/ lnn+

c
r ln2 n

)

+ ∑⌊(
1− 1

lnn

)
δ

⌋
≤r≤δ−1

1
r

= O(1/ lnn),

similar to case α > 3, in Section 5.4. Thus, E[∂ li | di−1]≤ µ

for some µ = O(1/ lnn), and from Eq. (5) (cf. Step 4) we
conclude that the expected routing time for a pair s, t with
d(s, t) = λ is Ω(ln(λ/ lnn)/µ) = Ω(ln2 n).

6 The value of λ is not optimized; it was chosen so that the same
simple expression works for all three cases.
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5.8 Lower bound for GreedyBiDir for α = 2

We show that for some pairs s, t in SW(`,n,2) the expected
routing time of GreedyBiDir is Ω(log4/3 n).

Recall from Section 4.3 that ν =Θ(lnn) in this case, and
thus the probability q1 that a node has only one out-contact
is 1−Θ(1/ lnn).

We will prove the lower bound for a pair s, t for which
d(s, t) = λ := 2ln1/3 n. From the definition of f2-hop in
Claim 5, it follows that for lnn < δ ≤ b ≤ d0 and 1 ≤ r <⌊(

1− 1
lnn

)
δ
⌋
,

f2-hop(r,b)≤
b−1

∑
j=r+1

∑
k≥2

min
{

qk j`−1,
kqk

lnn · (b− j)

}
·1

≤
b−1

∑
j=r+1

b` lnn

∑
k=2

kqk

lnn · (b− j)
+

b−1

∑
j=r+1

∑
k>b` lnn

qk j`−1

≤
b−1

∑
j=r+1

b` lnn

∑
k=2

1
νk lnn · (b− j)

+
b−1

∑
j=r+1

∑
k>b` lnn

j`−1

νk2

= O
(

ln2 b
ν lnn

)
+ O

(
b`

νb` lnn

)
= O

(
ln2

λ

ln2 n

)
,

where for the last relation we used that ν =Θ(lnn) and b≤
ds,t = λ . From this and Claim 5, it follows that Pr(di ≤ r |
di−1 = δ )≤ f (r,δ ) for 1≤ r < δ ≤ d0 ≤ λ , if f (r,δ ) is{

c ln
(

δ

δ−r

)
/ lnn+ c ln2 λ

ln2 n
, if 1≤ r <

⌊(
1− 1

lnn

)
δ
⌋
;

1, if b(1− 1
lnn )δc ≤ r ≤ δ −1.

Claim 4 then yields

E[∂ li | di−1 = δ ]≤ ∑
1≤r≤δ−1

f (r,δ )/r

= ∑
1≤r<

⌊(
1− 1

lnn

)
δ

⌋
(

c
r
· ln
(

δ

δ−r

)
/ lnn+

c ln2
λ

r ln2 n

)

+ ∑⌊(
1− 1

lnn

)
δ

⌋
≤r≤δ−1

1
r
.

Except for ∑
c ln2 λ

r ln2 n
, we have already seen that all the sums in

the last two lines are O(1/ lnn), e.g., in the analysis of case
α > 3. Further, we have

∑
1≤r≤δ

c ln2
λ

r ln2 n
=O

(
lnδ · ln2

λ

ln2 n

)
=O

(
ln3

λ

ln2 n

)
=O

(
1

lnn

)
,

because λ = 2ln1/3 n. Thus E[∂ li | di−1] ≤ µ := O(1/ lnn),
and from Eq. (5) (cf. Step 4) we conclude that the routing
time for pair s, t is Ω(ln(λ/ lnn)/µ) = Ω(ln3/4 n).
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