HRTF Magnitude Synthesis via Sparse Representation of Anthropometric Features

Abstract : We propose a method for the synthesis of the magnitudes of Head-related Transfer Functions (HRTFs) using a sparse representation of anthropometric features. Our approach treats the HRTF synthesis problem as finding a sparse representation of the subject's anthropometric features w.r.t. the anthropometric features in the training set. The fundamental assumption is that the magnitudes of a given HRTF set can be described by the same sparse combination as the anthropometric data. Thus, we learn a sparse vector that represents the subject's anthropometric features as a linear superposition of the anthropometric features of a small subset of subjects from the training data. Then, we apply the same sparse vector directly on the HRTF tensor data. For evaluation purpose we use a new dataset, containing both anthropometric features and HRTFs. We compare the proposed sparse representation based approach with ridge regression and with the data of a manikin (which was designed based on average anthropometric data), and we simulate the best and the worst possible classifiers to select one of the HRTFs from the dataset. For instrumental evaluation we use log-spectral distortion. Experiments show that our sparse representation outperforms all other evaluated techniques, and that the synthesized HRTFs are almost as good as the best possible HRTF classifier.
Type de document :
Communication dans un congrès
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 2014, Florence, Italy. pp.4468 - 4472, 2014, 〈10.1109/ICASSP.2014.6854447〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01097303
Contributeur : Piotr Bilinski <>
Soumis le : vendredi 19 décembre 2014 - 13:42:46
Dernière modification le : jeudi 15 novembre 2018 - 01:19:25
Document(s) archivé(s) le : lundi 23 mars 2015 - 17:51:21

Fichier

Piotr Bilinski - ICASSP 2014 -...
Fichiers produits par l'(les) auteur(s)

Licence


Copyright (Tous droits réservés)

Identifiants

Collections

Citation

Piotr Bilinski, Jens Ahrens, Mark R. P. Thomas, Ivan J. Tashev, John C. Platt. HRTF Magnitude Synthesis via Sparse Representation of Anthropometric Features. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 2014, Florence, Italy. pp.4468 - 4472, 2014, 〈10.1109/ICASSP.2014.6854447〉. 〈hal-01097303〉

Partager

Métriques

Consultations de la notice

212

Téléchargements de fichiers

432