Some experiments investigating a possible L(1/4) algorithm for the discrete logarithm problem in algebraic curves

Maike Massierer 1, *
* Auteur correspondant
1 CARAMEL - Cryptology, Arithmetic: Hardware and Software
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : The function field sieve, a subexponential algorithm of complexity L(1/3) that computes discrete logarithms in finite fields, has recently been improved to an algorithm of complexity L(1/4) and subsequently to a quasi-polynomial time algorithm. We investigate whether the new ideas also apply to index calculus algorithms for computing discrete logarithms in Jacobians of algebraic curves. While we do not give a final answer to the question, we discuss a number of ideas, experiments, and possible conclusions.
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées


https://hal.inria.fr/hal-01097362
Contributeur : Maike Massierer <>
Soumis le : vendredi 19 décembre 2014 - 15:17:22
Dernière modification le : jeudi 22 septembre 2016 - 14:31:09
Document(s) archivé(s) le : lundi 23 mars 2015 - 17:56:59

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01097362, version 1

Collections

Citation

Maike Massierer. Some experiments investigating a possible L(1/4) algorithm for the discrete logarithm problem in algebraic curves. 2014. <hal-01097362>

Partager

Métriques

Consultations de
la notice

187

Téléchargements du document

66