Point compression for the trace zero subgroup over a small degree extension field

Abstract : Using Semaev's summation polynomials, we derive a new equation for the F_q-rational points of the trace zero variety of an elliptic curve defined over F_q. Using this equation, we produce an optimal-size representation for such points. Our representation is compatible with scalar multiplication. We give a point compression algorithm to compute the representation and a decompression algorithm to recover the original point (up to some small ambiguity). The algorithms are efficient for trace zero varieties coming from small degree extension fields. We give explicit equations and discuss in detail the practically relevant cases of cubic and quintic field extensions.
Type de document :
Article dans une revue
Designs, Codes and Cryptography, Springer Verlag, 2015, 75 (2), pp.335--357. 〈http://link.springer.com/article/10.1007%2Fs10623-014-9921-0〉. 〈10.1007/s10623-014-9921-0〉
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01097434
Contributeur : Maike Massierer <>
Soumis le : mardi 6 janvier 2015 - 11:29:30
Dernière modification le : mercredi 10 janvier 2018 - 14:18:09
Document(s) archivé(s) le : mercredi 3 juin 2015 - 12:06:15

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Elisa Gorla, Maike Massierer. Point compression for the trace zero subgroup over a small degree extension field. Designs, Codes and Cryptography, Springer Verlag, 2015, 75 (2), pp.335--357. 〈http://link.springer.com/article/10.1007%2Fs10623-014-9921-0〉. 〈10.1007/s10623-014-9921-0〉. 〈hal-01097434〉

Partager

Métriques

Consultations de la notice

58

Téléchargements de fichiers

72