
HAL Id: hal-01097771
https://inria.hal.science/hal-01097771

Submitted on 7 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive Path Query Specification on Graph
Databases

Angela Bonifati, Radu Ciucanu, Aurélien Lemay

To cite this version:
Angela Bonifati, Radu Ciucanu, Aurélien Lemay. Interactive Path Query Specification on Graph
Databases. 18th International Conference on Extending Database Technology (EDBT), Mar 2015,
Bruxelles, Belgium. �10.5441/002/dbt.2015.44�. �hal-01097771�

https://inria.hal.science/hal-01097771
https://hal.archives-ouvertes.fr


Interactive Path Query Specification on Graph Databases

Angela Bonifati Radu Ciucanu Aurélien Lemay
University of Lille & INRIA, France

{angela.bonifati, radu.ciucanu, aurelien.lemay}@inria.fr

ABSTRACT
Graph databases are becoming pervasive in several applica-
tion scenarios such as the Semantic Web, social and biolog-
ical networks, and geographical databases, to name a few.
However, specifying a graph query is a cumbersome task for
non-expert users because graph databases (i) are usually of
large size hence difficult to visualize and (ii) do not carry
proper metadata as there is no clear distinction between
the instances and the schemas. We present GPS, a system
for interactive path query specification on graph databases,
which assists the user to specify path queries defined by reg-
ular expressions. The user is interactively asked to visualize
small fragments of the graph and to label nodes of interest
as positive or negative, depending on whether or not she
would like the nodes as part of the query result. After each
interaction, the system prunes the uninformative nodes i.e.,
those that do not add any information about the user’s goal
query. Thus, the system also guides the user to specify her
goal query with a minimal number of interactions.

1. INTRODUCTION
Graph databases [8] are becoming pervasive in several ap-

plication scenarios such as the Semantic Web, social and
biological networks, and geographical databases, to name
a few. Many mechanisms have been proposed to query a
graph database, which, although being very expressive, are
difficult to understand by non-expert users who are unable
to specify their queries with a formal syntax.

The problem of assisting non-expert users to specify their
queries has been recently raised by Jagadish et al. [6, 7].
More concretely, they have observed that “constructing a
database query is often challenging for the user, commonly
takes longer than the execution of the query itself, and
does not use any insights from the database”. While they
have mentioned these problems in the context of relational
databases, we argue that they become even more difficult
to tackle for graph databases. Indeed, graph databases usu-
ally do not carry proper metadata as there is no clear dis-

c© 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

tinction between the instances and the schemas. The ab-
sence of metadata and the difficulty of visualizing possibly
large graphs make unfeasible traditional query specification
paradigms for non-expert users e.g., query by example [9].

In this paper, we address the problem of assisting non-
expert users to specify their graph queries and propose GPS,
“a system for interactive Graph Path query Specification”.
The user is interactively asked to visualize small fragments
of the graph and to label nodes of interest as positive or neg-
ative examples, depending on whether or not she would like
the nodes as part of the query result. After each interaction,
the system prunes the uninformative nodes i.e., those nodes
that do not provide any useful information about the user’s
goal query. Thus, the system also guides the user to specify
her goal query with a minimal number of interactions.

In [2], we have studied the theoretical challenges of such
a scenario and empirically shown the improvements of using
an interactive approach on biological and synthetic datasets.
As a natural extension, we are interested next in applying
our algorithms to scenarios where human users provide the
positive and negative examples. Both in [2] and in this demo,
we focus on the class of path queries defined by regular ex-
pressions, where a node is selected if it has a path in the
language of a given regular expression. The objective of this
demo is thus to let real users interact with GPS to specify
different path queries that they could have in mind, while
minimizing the number of interactions with the system.

The rest of the paper is organized as follows. In Sec-
tion 2 we present some key ingredients of our system via
a motivating example, while in Section 3 we describe our
demonstration scenario. Due to space restrictions, in this
paper we provide only a glimpse of the techniques employed
by GPS. However, we refer to our full research paper [2] for
algorithmic details and for more elements of related work.

2. SYSTEM OVERVIEW
In this section we present a brief overview of our system.

To this purpose, we first introduce a motivating example.
Then, we describe the interactive scenario for path query
specification on graph databases.

Motivating example
We depict in Figure 1 a graph representing a geographical
database having as nodes the neighborhoods of a city area
(N1 to N6), along with cinemas (C1 and C2), and restau-
rants (R1 and R2) in such neighborhoods. The edges rep-
resent public transportation facilities from a neighborhood
to another (using labels tram and bus), along with other



N1 N2 N3

N4 N5 N6

C1 R1 R2 C2

bustram

bus bus

cinema

tram

restaurant

bus tram

restaurant

tram

bus

cinema

Figure 1: A geographical graph database.

kind of facilities (using labels cinema and restaurant). For
instance, the graph indicates that one can travel by bus be-
tween the neighborhoods N2 and N3, that in the neighbor-
hood N4 there is a cinema C1, and so on. Next, imagine
that a user wants to know from which neighborhoods in the
city she can reach cinemas via public transportation. These
neighborhoods can be retrieved using a path query defined
by the following regular expression:

q “ ptram` busq˚ ¨ cinema

The query q selects the nodes N1, N2, N4, and N6 as they
are entailed by the following paths in the graph:

N1 tram
ÝÝÑ

N4 cinema
ÝÝÝÝÑ

C1,

N2 bus
ÝÑ

N1 tram
ÝÝÑ

N4 cinema
ÝÝÝÝÑ

C1,

N4 cinema
ÝÝÝÝÑ

C1,

N6 cinema
ÝÝÝÝÑ

C2.

We assume that the user is not familiar with any formal syn-
tax of query languages, while she still wants to specify the
above query on the graph database in Figure 1 by provid-
ing examples of the query result. In particular, she would
positively or negatively label some graph nodes according
to whether or not they would be selected by the targeted
query. For instance, the user could label the nodes N2 and
N6 as positive examples, and the node N5 as a negative exam-
ple, thus willing to have all nodes but the last as part of the
query result. Indeed, there is no path starting in N5 through
which the user can reach a cinema, while there are paths for
the first two nodes. We also observe that the query q above
is consistent with the user’s examples because q selects all
positive examples and none of the negative ones.

To construct a query that is consistent with the examples
provided by the user, we have proposed in [2] a learning
algorithm that essentially consists of the following two steps:
(i) for each positive example, find a path that is not covered
by any negative, and (ii) construct an automaton recognizing
precisely the paths found at the previous step and generalize
it by state merges while no negative example is covered. By
continuing on our running example, take the graph database
from Figure 1, the positive examples N2 and N6, and the
negative example N5. Assuming that at step (i) we have
found the paths bus¨tram¨cinema and cinema for N2 and
N6, respectively, by generalizing the disjunction of these two
paths we are able to construct the aforementioned query q,
which corresponds to the user’s goal query. In the next

1

2

3

4

5

6

Input : a graph database G.

Is the halt condition satisfied?

Choose node ν
w.r.t. a strategy Υ.

Output : learned query.

Get neighborhood for ν.

Ask label for ν.

No Yes

visualize
ask for zoom

label ν with + or –
validate relevant path for ν

le
a
rn

a
qu

er
y
fr
o
m

a
ll
la
be
ls

p
ro
pa
ga
te

la
be
l
fo
r
ν

Figure 2: Interactive scenario.

section, while describing the interactive scenario, we explain
in more details how our system is able to find path queries
via simple user interactions.

Interactive scenario
Even though our demonstration scenario consists of several
types of interactions with the user (cf. Section 3), in this
section we concentrate exclusively on the core of GPS, the
interactive scenario for path query specification. This sce-
nario is inspired by the well-known framework of learning
with membership queries [1]. Recently, we have formalized
it as a general paradigm for learning queries on big data [3]
and also employed it for learning join queries on relational
databases [4, 5]. In Figure 2, we depict the current instan-
tiation for path queries on graphs and we detail next its
different steps.

1 2 We consider as input a graph database G. Ini-
tially, we assume an empty set of examples that we enrich
via simple interactions with the user. The interactions con-
tinue until a halt condition is satisfied. A natural condition is
to stop the interactions when there is exactly one consistent
query with the current set of examples. However, we also
allow weaker conditions e.g., the user may stop the process
earlier if she is satisfied by some candidate query proposed
at some intermediary stage during the interactions.

3 We propose nodes of the graph to the user according
to a strategy Υ i.e., a function that takes as input a graph G
and a set of examples S, and returns a node from G. Since
our goal is to minimize the amount of effort needed to learn
the user’s goal query, a smart strategy should avoid propos-
ing to the user those nodes that do not bring any information
to the learning process. Intuitively, a node is uninformative
if all its paths are covered by negative nodes. A good prac-
tical strategy should have two essential properties: (i) be
time-efficient i.e., the user does not have to wait too much



(a) (b) (c)

Figure 3: Interactions with the user for node labeling and path validation.
(a) Proposing node N2 to the user and showing the neighborhood of nodes at distance at most 2.
(b) Proposing node N2 to the user and showing the neighborhood of nodes at distance at most 3.
(c) Proposing a path of node N2 for user validation and showing all paths of N2 of length at most 3.

between two consecutive interactions, and (ii) attempt to
minimize the number of user interactions by asking the user
to only label the most informative nodes. In [2], we have
developed such strategies, which intuitively seek the nodes
having an important number of paths that are shorter than
a fixed bound and not covered by any negative node.

4 5 6 A node by itself does not carry enough in-
formation to allow the user understand whether it is part
of the query result or not. Therefore, we have to enhance
the information of a node by zooming out on its neighbor-
hood before actually showing it to the user. This step has
the goal of producing a small, easy to visualize fragment of
the initial graph, which possibly contains the nodes that the
user would label as positive or negative.

In our system, we initially compute the neighborhood of
a node ν as the graph consisting of all nodes and edges at
distance at most 2 from ν. For instance, given the graph
database from Figure 1, let us assume that we want to ask
the user to label the node N2. Thus, the user is first pre-
sented with the graph in Figure 3(a). Notice that we have
depicted by “. . .” the parts of the graph that are reachable
from the current node N2, but are not shown because they
are not in the current neighborhood. The user can label the
proposed node as a positive or negative example (i.e., an-
swer “Yes/No”) or she may ask for zooming out the neigh-
borhood to be able to decide whether or not the node is of
interest for her. For instance, if the user decides to zoom
out the neighborhood of N2, we show her the graph from
Figure 3(b), where we highlight (by drawing in blue) the
nodes and edges that have been added w.r.t. the previously
presented graph fragment. On our example, the user is able
now to see that she can reach a cinema from N2 and thus to
label this proposed node as a positive example.

Next, if the user has labeled a given node as a positive
example, we want to find out which of the paths of that
node is of interest for her. For this purpose, the system
builds all paths of the current node that are not yet cov-
ered by negative examples and of length at most the size of
the last neighborhood. We present these paths to the user
as a prefix tree and we highlight the path that the system
believes is the path of interest for her. The user can thus
validate this path or correct it further by choosing a differ-
ent path. In Figure 3(b) of our running example, we have
shown the neighborhood of size 3 of the node N2, which is
the node that the user has labeled as a positive example.
Consequently, the system shows to the user the paths of N2

of length at most 3 in the prefix tree of Figure 3(c). The sys-
tem highlights the path bus¨bus¨cinema as a candidate path
of interest for the user because (i) it has length equal to 3
and (ii) the system inferred that a path of this length better
fits the user’s will as the latter zoomed out the neighborhood
of length 2 in Figure 3(a).

After path validation by the user, the system seamlessly
propagates to the rest of the graph the labels provided by
the user at this stage, while at the same time pruning the
nodes that become uninformative. Our learning algorithm
outputs in polynomial time either a query q consistent with
all labels provided by the user, or instead the next node to
label if such a query cannot be constructed efficiently. We
have shown in [2] that constructing in polynomial time a
query consistent with the examples is not always possible,
but, after a certain number of examples (this number being
polynomial in the size of the query), the learning algorithm is
guaranteed to return in polynomial time a query equivalent
to the user’s goal query.

When the halt condition is satisfied, we return the latest
output of the learning algorithm to the user. In particular,
the halt condition may take into account an intermediary



learned query q e.g., when the user is satisfied by the output
of q on the instance and wants to stop the interactions.

3. DEMONSTRATION SCENARIO
The demonstration scenario consists of three parts. First,

we would like that the attendee appreciates the difficulties
that one can encounter when labeling directly the graph
database instance. Next, we propose to the attendee an
interactive scenario where she is prompted with small frag-
ments of the graph that can be easily visualized. On these
fragments, the user can label nodes as positive or nega-
tive examples and the system infers her queries. Third, we
present the core of our system, where we additionally show
to the user the set of relevant paths entailed by the positive
examples for further validation. This extra step guarantees
that the system generalizes the interesting paths for the user
and thus the constructed query indeed corresponds to what
the user had in mind. In the demo, we plan to show our
algorithms on real geographical data. Such data combines
the information about networks of public transportation in
France (e.g., Transpole1) with other facilities in the spirit of
our motivating example.

Static labeling
To illustrate why it is important to use an interactive ap-
proach in proposing nodes of interest to the user, we pro-
gressively show to the attendees the different types of in-
teractions our system can handle. In this first part of the
demonstration, we let the attendee visualize the graph and
label nodes of interest in the order she prefers. Then, the
system proposes a query consistent with the provided ex-
amples or, alternatively, points out that the labeled nodes
are inconsistent. The attendee must observe that this kind
of approach is not user-friendly as the user is asked to (i)
possibly visualize a large graph database instance and (ii)
inspects interesting fragments by herself. This clearly re-
quires more effort than visualizing small fragments of the
graph and simply answering “Yes/No” to nodes proposed by
the system. However, we think that it is still important to
show this static labeling scenario to the user to appreciate
the differences with respect to the interactive scenario, which
we discuss next. Moreover, the static labeling scenario is the
only one where we let the user to make mistakes by labeling
nodes inconsistently because in the other scenarios we show
informative nodes only hence any labeling is consistent.

Interactive labeling (without path validation)
In this part of the demonstration, we present the interac-
tive scenario illustrated in the previous section, but without
including the step of path validation. For instance, at each
interaction the system computes the most informative node
and shows it to the user together with its neighborhood as
in Figure 3(a). Then, the user may label it as a positive or
negative example, or she can ask for zooming out the neigh-
borhood, which yields a graph as in Figure 3(b). When the
user labels a proposed node as a positive example, the sys-
tem computes for that node a path that is not covered by any
negative example, the latter path being used by the learning
algorithm afterwards. The goal of this scenario is to show
the importance of the step of path validation. Although
the interactive scenario without this step finally produces a

1http://www.transpole.fr/

query that is consistent with the examples provided by the
user, this query is not necessarily always the query that the
user expects. As an example, on the graph and the labeled
examples in Figure 1, notice that the query bus selects both
positive examples C2 and C6, and not the negative example
C5. This query is clearly not the user’s goal query. There-
fore, even though the user has to perform an additional click
to validate or to correct the path of interest for a positive
node, this step is necessary to make sure that the learned
query is constructed using for each positive node the paths
of interest for her.

Interactive labeling (with path validation)
In this last part of the demonstration, we illustrate the core
of our system i.e., the interactive scenario described in Sec-
tion 2. As a difference w.r.t. the second demonstration sce-
nario, the user can now additionally choose as in Figure 3(c)
the path of interest instead of letting the learning algorithm
choose such a path. The goal of this third scenario is to
show the actual difference between “learning” a query that
is consistent with the node examples provided by the user
and assisting the user to“specifying”her query, also via node
examples. When the user also validates the paths of inter-
est for each positive node, this guarantees that the system
generalizes the interesting paths for the user and the con-
structed query is indeed the user’s goal query. In conclusion,
by using GPS, a non-expert user desiring to query a graph
database has neither to visualize all the graph that can be
potentially large, nor to look by herself for interesting nodes,
as the system guides her throughout small, easy to visualize
fragments of the graph and prompt her with nodes to label
on these fragments.

4. REFERENCES
[1] D. Angluin. Queries and concept learning. Machine

Learning, 2(4):319–342, 1988.

[2] A. Bonifati, R. Ciucanu, and A. Lemay. Learning path
queries on graph databases. In EDBT, 2015.

[3] A. Bonifati, R. Ciucanu, A. Lemay, and S. Staworko. A
paradigm for learning queries on big data. In Data4U,
pages 7–12, 2014.

[4] A. Bonifati, R. Ciucanu, and S. Staworko. Interactive
inference of join queries. In EDBT, pages 451–462,
2014.

[5] A. Bonifati, R. Ciucanu, and S. Staworko. Interactive
join query inference with JIM. PVLDB,
7(13):1541–1544, 2014.

[6] H. V. Jagadish, A. Chapman, A. Elkiss,
M. Jayapandian, Y. Li, A. Nandi, and C. Yu. Making
database systems usable. In SIGMOD Conference,
pages 13–24, 2007.

[7] A. Nandi and H. V. Jagadish. Guided interaction:
Rethinking the query-result paradigm. PVLDB,
4(12):1466–1469, 2011.

[8] P. T. Wood. Query languages for graph databases.
SIGMOD Record, 41(1):50–60, 2012.

[9] M. M. Zloof. Query by example. In AFIPS National
Computer Conference, pages 431–438, 1975.


