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Abstract. Timed-pNets is a semantic model to specify the communi-
cation behaviours of distributed systems. It has a tree style hierarchical
structure. The leaves are timed specifications which consist of a set of
logical clocks and clock relations. These logical clocks are encoded with
delay variables and delay bound. In this paper we discuss how to detect
time constraint conflicts and how to compute delay variables of clocks
in the non-leaf nodes. Then we can check system’s time properties like
deadline. From our formalization of timed-pNets, we generate a system
of logical clocks that can be simulated in the TimeSquare tool. We take
a simple use case from ITS to simulate and check some time properties.

1 Introduction

Timed-pNets[3] has been proposed to specify communication behaviours of het-
erogeneous distributed systems. This timed model is able to specify time con-
strains based on logical time. Logical time has proved its benefits in several
domains. It was first introduced by Lamport to represent the execution of dis-
tributed systems [5]. Logical time can be multiform, a global partial order built
from local total orders of clocks. The multiform nature of logical time consists
in the ability to use any repetitive event as a reference for the other ones[2]. In-
spired by the CCSL [1], we design clock relations to express the systems logical
time constraints. So our model is a logical constraint model that is expressed by
a set of logical clocks and clock constraints.

However, the logical constraint model cannot be directly used to check some
time properties like deadline property since the distance of two clocks cannot be
measured. In this paper, we focus on address the issue of transferring our logical
constraints model to schedulable model in which the time properties like deadline
can be checked. We propose a virtual timestamp to link those logical clocks. In
Lamport, virtual time is identifiable by the succession of events (and therefore is
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discrete). It does not flow by its own means like real time whose passage we can
not escape or influence. Based on his work, we define our virtual timestamp as
two dimension values, and the number we assign to clocks as virtual timestamp is
based on a reference clock. By this way, we can compare the delay variables from
different logical clocks. Furthermore, we propose a theorems about computing
delay variable of global clocks in timed-pNets. In the end, we take a use case
from ITS (Intelligent Transportation Systems) for simulation.

2 Virtual Timestamps and Delay Bounds

(a) time diagram (b) updated time diagram

Fig. 1: Time Diagram and Updated One

We define a virtual timestamp as a pair of natural numbers: one represents
when a timed-action occurs in terms of a reference clock (X-axis), another repre-
sents the order of the occurrences of a timed-action (Y-axis). Fig.1 shows us an
example in which the timed-actions are assigned with virtual timestamps. In the
figure, the processes are presented as solid black lines. The sequence of timed-
actions executed in these processes are presented as solid black points on these
black lines. The actions in each process are totally ordered. The communications
between processes are represented by clock relations. For example, in the Fig.
1, the clock Ca and clock Cd are coincident. We use a sequence of red lines to
represent the coincidence relation of two clocks. Similarly, we use a sequence of
red arrows to represent the precedence relations (e.g. Ca ≺ Cb). We define the
virtual timestamps and their assignment rules as follows.

Definition 1 (Virtual Timestamps). A virtual timestamp (denoted as T (α i))
of a timed-action occurrence α i is a pair of natural numbers (xα i, i) (xα i ∈
N, i ∈ N).

Definition 2 (Virtual Timestamp Assignment Rules). Let T (α i) , (xα i, i)
be the virtual timestamp of the occurrence α i of the clock Cα (α ∈ LA,T ,P), and

T (β i) , (xβ i, i) be the virtual timestamp of the occurrence β i of the clock Cβ

(β ∈ LA,T ,P). Then we have:

– Cα = Cβ ⇒ ∀i, xα i = xβ i := max(xβ i, xα i)
– Cα ≺ Cβ ⇒ ∀i, xα i < xβ i and xβ i := max(xα i, xβ i) + tβi

(the variable
tβi

presents the delay time from the occurrence α i to β i in terms of the
reference clock that a user chose. tβi

≥ 1, tβi
∈ N)



Initially, for an independent clock (without any relation with other clocks),
the X-axis value of the timestamps of the clock can be set with any natural
number. The values will be updated according to the clock relations applied on
this clock. Take the clock Cb in the Fig. 1(a) as an example, we know the relation
Ca ≺ Cb ≺ Cc. According to the assignment rules, we must have xa 1 < xb 1 <

xc 1. In this figure, the timestampe of the first occurrence of clock Cb is initially
set as (5, 1). It can also be initially set as (7, 1) only if it satisfied the condition
xa 1 < xb 1 < xc 1. When adding new clock constraints, these timestamps in
the Fig.1 may also be updated according to the assignment rules. For example,
assume that we add other four clock relations (Ca ≺ Cg, Cg ≺ Ce, Cf ≺ Cc, Ce =
Cp). If the delay from Cf to Cc is 2, then the virtual timestamps may be updated
by following the rules (as shown in the Fig.1(b)).

2.1 Time Constraint Conflicts

Since the timestamps may be updated, the clock delays may also be updated,
which may cause time constraint conflicts. For example, in the Fig. 1, assume
the delay bound of Cc is [2, 5]. Before we add the relation Cf ≺ Cc, there is no
time constraint conflict since tCc[1] = 8 − 5 = 3 ∈ [2, 5]. However, after adding
this relation, we found out that tCc[1] = 12−5 = 7 6∈ [2, 5]. Here we give a formal
definition of time constraint conflicts.

Definition 3 (Time Constraints conflicts). Let Cα be a clock built on timed-
action α(p)tα|btα . A time constraint conflict of clock Cα exists if ∃i ∈ N, tαi

6∈
btαi

.

Fig. 2: Three cases in Theorem 1

2.2 Compute Delay and Delay Bounds

In timed-pNets, non-leaf nodes are the synchronization devices of their subsys-
tems. The delays and delay bounds of the global logical clocks in these non-leaf
nodes are computed in terms of the local logical clocks of the subsystems. When
building these non-leaf nodes, time constraint conflicts may happen. Here, we
propose a theorem to compute the delays and delay bounds of these global clocks
so that we can check if time constraint conflicts exist.

Theorem 1 (The Delay Bounds of Global Clocks). Given a timed-pNet

< P,AG, CG, J, ÃJ , C̃J , R̃J ,
−→
V >. Assume that all local clocks (in the set C̃J)



have no time constraint conflict. Consider a global clock Cγ and let Cg = {Cgk}(k ∈

N) be the set of causal clocks of Cγ (Cg ⊆ CG, Cγ ∈ CG, γ , γ(pγ)
tγ |btγ ).

(1) When −→v =< ..., Cα, ..., Cβ , ... >→ Cγ . As shown in Fig. 2, let Cm =
{Cmk′ }(k

′ ∈ N) be a set of local clocks that are in the same hole as Cα,
and that contribute to generate the global clocks in Cg. Let Cn = {Cnk′′ } be
a set of local clocks that are in the same hole as Cβ, and that contribute to
generate the global clocks also in Cg.

(1.1) If < . . . , Cmk′ , . . . , Cnk′′ , . . . >→ Cgk as shown the case (1.1) in Fig. 2,
then
bCγ

= [min{min{l(bPCm
k′ →Cα

)|k′ ∈ N},min{l(bPCn
k′′ →Cβ

)|k′′ ∈ N}},

max{max{u(bPCm
k′ →Cα

)|k′ ∈ N},max{u(bPCn
k′′ →Cβ

)|k′′ ∈ N}}] (Cmk′ ∈

Cm, Cnk′′ ∈ Cn, k
′, k′′ ∈ N);

(1.2) If < . . . , Cmk′ , . . . , . . . , . . . >→ Cgk as shown the case (1.2) in Fig. 2,
then
bCγ

= [min{l(bPCm
k′ →Cα

)|k′ ∈ N},max{u(bPCm
k′ →Cα

)|k′ ∈ N}] (Cmk′ ∈

Cm, k′ ∈ N),
(1.3) If < . . . , . . . , . . . , Cnk′′ , . . . >→ Cgk as shown the case (1.3) in Fig. 2,

then
bCγ

= [min{l(bPCn
k′′ →Cβ

)|k′′ ∈ N},max{u(bPCn
k′′ →Cβ

)|k′′ ∈ N}] (Cnk′′ ∈

Cn, k
′′ ∈ N),

(2) When −→v =< ..., Cα, ..., . . . , ... >→ Cγ . Let Cm be a set of local clocks that
in the same hole as Cα, and that contribute to generate the global clocks
in Cg.Then bCγ

= [min{l(bPCm
k′ →Cα

)|k′ ∈ N},max{u(bPCm
k′ →Cα

)|k′ ∈ N}]

(Cmk′ ∈ Cm, k′ ∈ N).

Because of the page limitation, we omit the proof. In the theorem, l(bPCm
k′ →Cα

)

(resp.u(bPCm
k′ →Cα

)) means the lower (resp. upper) bound of bPCm
k′ →Cα

from

clock Cmk′ to clock Cα along a set of paths.

3 Simulation
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Fig. 3: Example of a Timed-pNets subsystem

We simulate the system of the Fig. 3 by means of the TimeSquare tool [4] to
check system time constraint conflicts. For simplification, we choose a reference
clock that ticks periodically. All delays and delay bounds of other logical clocks
are specified in terms of this reference clock. In our simulation, we assume that



the delay bounds of all action occurrences are between [1, 3] in the sense that the
delays of those actions should stay between the first and the third occurrences of
the reference clock. The simulation result tells us if conflicts exist in the system.

Result: TimeSquare reports us an error. The main reason is that the commu-
nications between those component create conflicts. By analyzing those updated
virtual timestamps in the Fig.4(a), we can see that a time constraint conflict

happens on the clock C
{2s−1}
?Ack (x

C
{2s−1}
?ack

[1]
− x

C
{2s}
!notify

[1]
= 9− 5 = 4 6∈ [1, 3]).

Solution: To fix the issue, we set the delay of ?Notify i in component
“CommRes” to 1 and limit the delays of all clocks less than 2 except the clock

C
{2s−1}
?Ack . After redoing the simulation, we found out that no conflict exists.

TimeSquare outputs VCD view as shown in Fig.4(b).

(a) Time Constraint Conflicts (b) Checking property

Fig. 4: Conflict Analysis and Results

4 Conclusion

In this paper, we investigated the time constraints and properties of timed-pNets
model. We took a use case from ITS to build a timed-pNets communication
model. From our formalization of timed-pNets, we generated a system of logical
clocks and solved the issue of detecting time constraint conflicts.
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