Checking the strict positivity of Kraus maps is NP-hard

Abstract : Basic properties in Perron-Frobenius theory are positivity, primitivity, and irreducibility. Whereas these properties can be checked in polynomial time for stochastic matrices, we show that for Kraus maps - the noncommutative generalization of stochastic matrices - checking positivity is NP-hard. This is in contrast with irreducibility and primitivity, which we show to be checkable in strongly polynomial time for completely positive maps - the noncommutative generalization of nonpositive matrices. As an intermediate result, we get that the bilinear feasibility problem over $\mathbb{Q}$ is NP-hard.
Type de document :
Article dans une revue
Information Processing Letters, Elsevier, 2017, 118, pp.35--43. 〈10.1016/j.ipl.2016.09.008〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01097942
Contributeur : Stephane Gaubert <>
Soumis le : lundi 22 décembre 2014 - 14:45:02
Dernière modification le : mercredi 14 novembre 2018 - 15:20:11

Lien texte intégral

Identifiants

Citation

Stéphane Gaubert, Zheng Qu. Checking the strict positivity of Kraus maps is NP-hard. Information Processing Letters, Elsevier, 2017, 118, pp.35--43. 〈10.1016/j.ipl.2016.09.008〉. 〈hal-01097942〉

Partager

Métriques

Consultations de la notice

512