P. Abbeel, Y. Andrew, and . Ng, Apprenticeship learning via inverse reinforcement learning, International conference on Machine learning, 2004.

M. Aharon, M. Elad, and A. Bruckstein, Design of dictionaries for sparse representation, Proceedings of SPARS, number 5, pp.9-12, 2005.

J. Almingol, L. Montesano, and M. Lopes, Learning multiple behaviors from unlabeled demonstrations in a latent controller space, International conference on Machine learning (ICML), 2013.
URL : https://hal.archives-ouvertes.fr/hal-00871852

M. Babes-vroman, V. Marivate, K. Subramanian, and M. Littman, Apprenticeship learning about multiple intentions, International conference on Machine learning (ICML), number 28, 2011.

S. Hellbach, P. Julian, E. Eggert, H. Körner, and . Gross, Basis decomposition of motion trajectories using spatio-temporal nmf, Int. Conf. on Artificial Neural Networks (ICANN), pp.597-606, 2009.

O. Patrik and . Hoyer, Non-negative sparse coding, 2002.

N. Jetchev and M. Toussaint, Task space retrieval using inverse feedback control, International Conference on Machine Learning, number 28 in ICML '11, pp.449-456, 2011.

D. Daniel, . Lee, and . Sebastian-seung, Learning the parts of objects by nonnegative matrix factorization, Nature, vol.401, issue.6755, pp.788-91, 1999.

H. Lee, A. Battle, R. Raina, and A. Y. Ng, Efficient sparse coding algorithms, Advances in Neural Information Processing Systems (NIPS), 2006.

A. Lefèvre, F. R. Bach, and C. Févotte, Itakura-saito nonnegative matrix factorization with group sparsity, Acoustics, Speech and Signal Processing, pp.21-24, 2011.

S. Levine, Z. Popovic, and V. Koltun, Feature construction for inverse reinforcement learning, Advances in Neural Information Processing Systems, issue.24, pp.1-9, 2010.

Y. Li, C. Fermuller, Y. Aloimonos, and H. Ji, Learning shiftinvariant sparse representation of actions, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.2630-2637, 2010.

O. Mangin and P. Oudeyer, Learning semantic components from subsymbolic multimodal perception, the Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00842453

G. Neu and C. Szepesvári, Apprenticeship learning using inverse reinforcement learning and gradient methods, Conference on Uncertainty in Artificial Intelligence (UAI), number 23, pp.295-302, 2007.

Y. Andrew, S. Ng, and . Russell, Algorithms for inverse reinforcement learning, International Conference on Machine Learning, 2000.

A. Y. Ng, D. Harada, and S. Russell, Policy invariance under reward transformations: Theory and application to reward shaping, International Conference on Machine Learning (ICML), vol.16, pp.278-287, 1999.

P. Paatero and . Tapper, Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, vol.5, issue.2, pp.111-126, 1994.

D. Ramachandran and E. Amir, Bayesian inverse reinforcement learning, International Joint Conference on Artificial Intelligence (IJCAI'07), vol.20, pp.2586-2591, 2007.

N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, Maximum margin planning, International conference on Machine learning-ICML '06, vol.23, pp.729-736, 2006.

D. L. Silver, Q. Yang, and L. Li, Lifelong machine learning systems : Beyond learning algorithms, AAAI Spring Symposium Series, pp.49-55, 2013.

F. M. Louis, H. Bosch, L. W. Van-hamme, and . Boves, Unsupervised detection of words questioning the relevance of segmentation, Speech Analysis and Processing for Knowledge Discovery, ITRW ISCA, 2008.

A. Brian-d-ziebart, A. Maas, A. Bagnell, and . Dey, Maximum entropy inverse reinforcement learning, AAI Conference on Artificial Intelligence, pp.1433-1438, 2008.