Optimality conditions and regularity results for time optimal control problems with differential inclusions

Abstract : We study the time optimal control problem with a general target $\mathcal S$ for a class of differential inclusions that satisfy mild smoothness and controllability assumptions. In particular, we do not require Petrov's condition at the boundary of $\mathcal S$. Consequently, the minimum time function $T(\cdot)$ fails to be locally Lipschitz---never mind semiconcave---near $\mathcal S$. Instead of such a regularity, we use an exterior sphere condition for the hypograph of $T(\cdot)$ to develop the analysis. In this way, we obtain dual arc inclusions which we apply to show the constancy of the Hamiltonian along optimal trajectories and other optimality conditions in Hamiltonian form. We also prove an upper bound for the Hausdorff measure of the set of all nonlipschitz points of $T(\cdot)$ which implies that the minimum time function is of special bounded variation.
Type de document :
Pré-publication, Document de travail
23 pages, 1 figure. 2013
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01098255
Contributeur : Estelle Bouzat <>
Soumis le : mardi 23 décembre 2014 - 14:34:22
Dernière modification le : lundi 22 janvier 2018 - 10:50:03
Document(s) archivé(s) le : mardi 24 mars 2015 - 10:35:10

Fichier

1311.4415v1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01098255, version 1
  • ARXIV : 1311.4415

Collections

Citation

Piermarco Cannarsa, Antonio Marigonda, Khai T. Nguyen. Optimality conditions and regularity results for time optimal control problems with differential inclusions. 23 pages, 1 figure. 2013. 〈hal-01098255〉

Partager

Métriques

Consultations de la notice

172

Téléchargements de fichiers

80