Computation of continuous and piecewise affine Lyapunov functions by numerical approximations of the Massera construction

Abstract : The numerical construction of Lyapunov functions provides useful information on system behavior. In the Continu-ous and Piecewise Affine (CPA) method, linear programming is used to parameterize a CPA Lyapunov function for continuous nonlinear systems. This method is relatively slow due to the linear program that has to be solved. A recent proposal was to parameterize the CPA Lyapunov function based on a Lyapunov function in a converse Lyapunov theorem by Yoshizawa. In this paper we propose parameterizing CPA Lyapunov functions using a Lyapunov function construction in a classic converse Lyapunov theorem by Massera. We provide the theory for such a parameterization and present several examples to illustrate the utility of this approach.
Type de document :
Communication dans un congrès
CDC 2014, 2014, Los Angeles, United States. Proceedings of the 53rd IEEE Conference on Decision and Control. 〈http://control.disp.uniroma2.it/CDC2014/〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01098274
Contributeur : Estelle Bouzat <>
Soumis le : mardi 23 décembre 2014 - 15:34:26
Dernière modification le : lundi 21 mars 2016 - 11:33:31
Document(s) archivé(s) le : mardi 24 mars 2015 - 10:41:18

Fichier

Li_etal_Massera_2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01098274, version 1

Collections

Citation

Jóhann Björnsson, Peter Giesl, Sigurdur Hafstein, Christopher M. Kellett, Huijuan Li. Computation of continuous and piecewise affine Lyapunov functions by numerical approximations of the Massera construction. CDC 2014, 2014, Los Angeles, United States. Proceedings of the 53rd IEEE Conference on Decision and Control. 〈http://control.disp.uniroma2.it/CDC2014/〉. 〈hal-01098274〉

Partager

Métriques

Consultations de la notice

175

Téléchargements de fichiers

103