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Abstract. We consider a model predictive control approach to approximate
the solution of infinite horizon optimal control problems for perturbed nonlin-

ear discrete time systems. By reducing the number of re-optimizations, the

computational load can be lowered considerably at the expense of reduced ro-
bustness of the closed-loop solution against perturbations. In this paper, we

propose and analyze an update strategy based on re-optimizations on shrinking
horizons which is computationally less expensive than that based on full hori-

zon re-optimization, and at the same time allowing for rigorously quantifiable

robust performance estimates.

1. Introduction. The paper deals with solving infinite horizon optimal control
problems (OCPs) for perturbed nonlinear systems by model predictive control
(MPC). MPC provides an algorithmic synthesis of an approximately optimal feed-
back law by iteratively solving finite horizon OCPs. Due to its feedback nature,
MPC has good inherent robustness properties in the perturbed setting considered
in this paper, although the optimization in each iteration is performed for a nominal
model, i.e., without taking into account perturbations.

The computational load of MPC can be lowered considerably by performing re-
optimizations less often, resulting in a so-called multistep feedback law. In the
nominal (i.e., unperturbed) case, only a mild difference between the quality of the
solutions can be observed when using multistep feedback laws instead of a standard
MPC scheme. For a system subject to perturbations, however, the multistep feed-
back does not allow the controller to react, for an extended period of time, against
the deviation of the real state to the predicted state. Hence, multistep feedback laws
are in general considerably less robust against perturbations. To address the chal-
lenge of maintaining robustness while keeping the computational cost low, in this
paper we propose and analyze an updating approach based on re-optimizations on
shrinking horizons which are computationally less expensive than re-optimizations
on the full horizon.

Our analysis builds upon the work presented in [5] in which, for a finite horizon
optimal control problem setting for systems under perturbations, the application of
the nominal control strategy and the shrinking horizon strategy are analyzed. The
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shrinking horizon strategy consists of performing re-optimization, for the nominal
model, at each sampling instant using the current perturbed state. The evident
performance improvement brought about by the re-optimization is quantified in
[5] using moduli of continuity of value functions. From the finite horizon optimal
control setting, in this paper we switch attention to infinite horizon optimal control.
Since we treat undiscounted problems, one of the key challenges when passing from
finite to infinite horizon is that typically asymptotic stability of the approximately
optimal solution must be established before we can even talk about approximately
optimal performance. Since for perturbed systems asymptotic stability is often too
strong a property to expect, in this paper we develop our results using the notion
of practical asymptotic stability.

Our approach has similarities to [14] in the sense that updates are applied in
order to cope with the nominal and real model disparity. Moreover, as in [14] we
consider MPC without stabilizing terminal constraints or costs, i.e., the simplest
possible MPC variant. However, while in [14] the main result states that reason-
able updates do not negatively affect stability and performance, our main result in
this paper shows that the particular shrinking horizon updates do indeed allow for
improved stability and performance estimates compared to non-updated MPC. Al-
though the particular shrinking horizon updates considered in this paper are quite
specific, we expect that the results of our analysis can be extended to the so-called
sensitivity-based multistep MPC [13] (based on [3, 12, 15]) wherein re-optimization
is replaced by a sensitivity-based update viewing the latter as an approximation
to the former. This expectation is supported by the fact that shrinking horizon
updates and sensitivity updates yield almost identical closed loop behaviour in the
numerical example in this paper. Eventually, our analysis may thus pave the way
to a — to our knowledge first — rigorous closed-loop robustness analysis of fast
MPC variants using real-time iteration [17] and hierarchical updates [2].

The paper is organized as follows. In Sections 2, 3 and 4, we provide the setup,
describe the MPC algorithms used in this paper and summarize established stability
and performance results for nominal multistep MPC. In Section 5, perturbations
are introduced to the system, a weaker concept of stability is defined and a no-
tation needed for the analysis of trajectories with undergoing perturbations and
re-optimizations is introduced. Section 6 gives analogous statements to some prop-
erties in Section 4 in the perturbed and possibly re-optimized setting. In Section 7,
we examine suboptimality performance indices of the perturbed schemes under con-
sideration. These results serve as ingredients for the main stability and performance
result formulated and proved in Section 8. Our results are illustrated by a numerical
example in Section 9. Finally, Section 10 concludes the paper.

2. Setting and Preliminaries. We consider the nonlinear discrete time control
system

x(k + 1) = f(x(k), u(k)) (1)

where x is the state and u is the control value. Let the normed vector spaces X
and U be state and control spaces, respectively. For a given state constraint set X
and control constraint sets U(x), x ∈ X, we require x ∈ X ⊆ X and u ∈ U(x) ⊆ U .
The notation xu(·, x0) (or briefly xu(·)) denotes the state trajectory when the initial
state x0 is driven by control sequence u(·). We refer to (1) as the nominal model.
In Section 5 we will incorporate perturbations into this model.
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A time-dependent feedback law µ : X × N → U yields the feedback controlled
system

x(k + 1) = f(x(k), µ(x(k̃), k)). (2)

Here, the next state at time instant k+ 1 depends on the current state at k and the
feedback value µ(x(k̃), k), which enters the system as a control value. The feedback

value, in turn, depends on the system state x(k̃) at a time k̃ = k̃(k) ≤ k which may
be strictly smaller than k. We refer to (2) as the closed-loop system.

The classical MPC method is motivated by the following problem. We aim to
find a feedback law µ that ’solves’ the infinite horizon OCP

min
u(·)∈U∞(x0)

J∞ (x0, u(·)) (3)

where the objective function is given by

J∞ (x0, u(·)) :=

∞∑
k=0

` (xu(k, x0), u(k))

which is an infinite sum of stage costs ` : X × U → R+
0 along the trajectory with

x0 as the initial value steered by the control sequence u(·) ∈ U∞(x0). This type
of objective is often related to feedback stabilization problems, see Section 4 for
details. The objective is minimized over all infinite admissible control sequences,
i.e., all control sequences u(·) satisfying

U∞(x0) :=

{
u(·) ∈ U∞

∣∣∣∣ xu(k + 1, x0) ∈ X and
u(k) ∈ U(xu(k, x0)) for all k = 0, 1, . . .

}
Its optimal value function is given by

V∞(x0) := inf
u(·)∈U∞(x0)

J∞ (x0, u)

and the infinite horizon closed-loop performance of a given time-dependent feedback
µ is given by

Jcl
∞(x0, µ) :=

∞∑
k=0

`
(
xµ(k, x0), µ(xµ(k̃, x0), k)

)
(4)

which is the infinite sum of costs along the trajectory driven by the feedback law.
Given an initial state, we would like to solve the infinite horizon optimal control
problem and obtain an optimal control in feedback form, i.e., to find a feedback µ
with Jcl

∞(x0, µ) = V∞(x0). In the general nonlinear setting, however, this problem
is often computationally intractable, so we circumvent it by considering the finite
horizon minimization problem

min
u(·)∈UN (x0)

JN (x0, u(·)) PN (x0)

for an objective function

JN (x0, u(·)) :=

N−1∑
k=0

` (xu(k, x0), u(k))

representing a cost associated with an initial state x0, a control sequence u(·) and
optimization horizon N . The minimization is performed over all control sequences
u(·) ∈ UN (x0) where

UN (x0) :=

{
u(·) ∈ UN

∣∣∣∣ xu(k + 1, x0) ∈ X and
u(k) ∈ U(xu(k, x0)) for all k = 0, . . . , N − 1

}
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One can observe that PN (x0) is parametric with respect to the initial value x0,
hence, the reason for the notation. We define the optimal value function associated
with the initial state value x0 by

VN (x0) := inf
u(·)∈UN (x0)

JN (x0, u(·))

In this paper, we assume there exists a (not necesssarily unique) control sequence
u∗(·) ∈ UN (x0) satisfying VN (x0) = JN (x0, u

∗(·)), which is called the optimal
control sequence. Alternatively, statements could be formulated using ε-optimal
control sequences, at the expense of a considerably more technical presentation.

The dynamic programming principle, an important concept that we will be using
in our analysis, relates the optimal value functions of OCPs of different optimization
horizon length for different points along a trajectory, see [1] or [7, Section 3.4].

Theorem 2.1. (Dynamic programming principle) Let x0 be an initial state value.
Let u∗(0), u∗(1), . . . , u∗(N − 1) be an optimal control sequence for PN (x0) and
xu∗(0) = x0, xu∗(1), . . . , xu∗(N) denote the corresponding optimal state trajectory.
Then for any i, i = 0, 1, . . . , N−1, the control sequence u∗(i), u∗(i+1), . . . , u∗(N−1)
is an optimal control sequence for PN−i(xu∗(i)).

3. MPC algorithms. In this section, we explain how the finite horizon OCP
PN (x0) can be used in order to construct an approximately optimal feedback law
for the infinite horizon problem (3).

The ’usual’ or ’standard’ MPC algorithm proceeds iteratively as follows.

Algorithm 3.1. (Standard MPC)

(1) measure the state x(k) ∈ X of the system at time instant k
(2) set x0 := x(k) and solve the finite horizon problem PN (x0). Let u∗ denote the

optimal control sequence and define the MPC feedback µN (x(k)) := u∗(0)
(3) apply the control value µN (x(k)) to the system, set k := k + 1 and go to (1)

This iteration, also known as a receding horizon strategy, gives rise to a (non-
time-dependent) feedback µN which — under appropriate conditions, see Section
4 — approximately solves the infinite horizon problem. It generates a nominal
closed-loop trajectory xµN (k) according to the rule

xµN (k + 1) = f(xµN (k), µN (xµN (k))) (5)

In this work, we consider two other variants of MPC controllers. First, we con-
sider multistep feedback MPC [8] in which the optimization in Step (2) is performed
less often, by applying the first m ∈ {2, . . . , N − 1} elements of the optimal control
sequence obtained after optimization.

Algorithm 3.2. (m-step MPC)

(1) measure the state x(k) ∈ X of the system at time instant k
(2) set x0 := x(k) and solve the finite horizon problem PN (x0). Let u∗ denote

the optimal control sequence and define the time-dependent MPC feedback

µN,m(x(k), k + j) := u∗(j), j = 0, . . . ,m− 1 (6)

(3) apply the control values µN,m(x(k), k + j), j = 0, . . . ,m − 1, to the system,
set k := k +m and go to (1)
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Here, the value m is called the control horizon. The resulting nominal closed-loop
system is given by

xµN,m(k + 1) = f(xµN,m(k), µN,m(xµN,m(bkcm), k)) (7)

where bkcm denotes the largest integer multiple of m less than or equal to k. The
motivation behind considering m-step MPC is that the number of optimizations is
reduced by the factor 1/m, thus the computational effort decreases accordingly.

Second, we also consider an updated multistep feedback MPC which, similar
to the usual MPC, entails performing optimization every time step, but unlike the
standard MPC, wherein we perform optimization over full horizonN , we re-optimize
over shrinking horizons.

Algorithm 3.3. (updated m-step MPC)

(1) measure the state x(k) ∈ X of the system at time instant k
(2) set j := k − bkcm, xj := x(k) and solve the finite horizon problem PN−j(xj).

Let u∗ denote the optimal control sequence and define the MPC feedback

µ̂N,m(x(k), k) := u∗(0) (8)

(3) apply the control value µ̂N,m(x(k), k) to the system, set k := k + 1 and go to
(1)

The nominal updated multistep MPC closed loop is then described by

xµ̂N,m(k + 1) = f(xµ̂N,m(k), µ̂N,m(xµ̂N,m(k), k)) (9)

We note that due to the dynamic programming principle in Theorem 2.1, in the
nominal setting the closed loop generated by the multistep feedback (7) and by the
updated multistep feedback MPC closed-loop system (9) coincide. For this reason,
(8) is only useful in the presence of perturbations. These will be formalized in
Section 5.

In presence of perturbations, however, we expect the updated multistep feedback
to provide more robustness, in the sense that stability is maintained for larger per-
turbations and performance degradation is less pronounced as for the non-updated
case. This will be rigorously analyzed in the remainder of this paper. Compared
to standard MPC, the optimal control problems on shrinking horizon needed for
the updates are faster to solve than the optimal control problems on full horizon.
Moreover, for small perturbations the updates may also be replaced by approxima-
tive updates in which wherein re-optimizations are approximated by a sensitivity
approach [13], as illustrated by our numerical example in Section 9. This leads to
another significant reduction of the computation time.

4. Nominal stability and performance. Before we analyze the properties of the
feedback laws under perturbation, we briefly summarize the main steps of the anal-
ysis of nominal MPC without terminal conditions from [4, 8] (see also [7, Chapter
6]) which we will later adapt to the perturbed situation.

Suppose x∗ is an equilibrium of (1). MPC is typically used as an algorithm to
find µN : X×N→ U that approximately solves the infinite horizon OCP such that
x∗ is asymptotically stable for the feedback controlled system (5) in the following
sense.
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Definition 4.1. An equilibrium x∗ ∈ X is asymptotically stable for the closed-loop
system (2) if there exists β ∈ KL such that1

‖xµ(k, x0)‖x∗ ≤ β(‖x0‖x∗ , k)

holds for all x0 ∈ X and all k ∈ N0 where ‖x‖x∗ := ‖x− x∗‖. In this case, we say
that the feedback law µ asymptotically stabilizes x∗.

Asymptotic stability is enforced by choosing the stage cost ` to penalize the
distance to the desired equilibrium. Formally, we assume that there exist K∞-
functions α1, α2 such that the inequality

α1(‖x‖x∗) ≤ `
∗(x) ≤ α2(‖x‖x∗) (10)

holds for all x ∈ X, where `∗(x) := infu∈U `(x, u).
Conditions needed so that an MPC feedback law asymptotically stabilizes a nom-

inal system have been well understood in the literature. On one hand, the use of
stabilizing terminal constraints or Lyapunov function terminal costs added to the
objective function is employed in order to ensure asymptotic stability of the MPC
closed loop, see, e.g., [16] or [7, Chapter 5] and references therein. In this paper, we
do not use such terminal conditions but rather consider MPC without terminal con-
straints and costs. Due to its simplicity in design and implementation, this variant is
often preferred in practice which is why we are interested in analyzing its properties.
The key for the analysis of such MPC schemes is the following proposition.

Proposition 4.2. (i) Consider a time-dependent feedback law µ : X× N→ U , the
corresponding solution xµ(k) with xµ(0) = x0 of (2), and a function V : X → R+

0

satisfying the relaxed dynamic programming inequality

V (x0) ≥ V (xµ(m)) + α

m−1∑
k=0

`(xµ(k, x0), µ(xµ(k, x0), k)) (11)

for some α ∈ (0, 1], some m ≥ 1 and all x0 ∈ X. Then for all x ∈ X the estimate

V∞(x) ≤ Jcl
∞(x, µ) ≤ V (x)/α (12)

holds.
(ii) If, moreover, (10) holds and there exists α4 ∈ K∞ with V (x) ≤ α4(‖x‖x∗),

then the equilibrium x∗ is asymptotically stable for the closed-loop system.

Proof. See Proposition 2.4 and Theorem 5.2 of [4].

In (12), the value α is a performance bound which indicates how good the feed-
back µ approximates the solution of the infinite horizon problem: for α = 1, the
feedback is infinite horizon optimal and the smaller α > 0 is the larger the sub-
optimality gap becomes. Moreover, the existence of an α > 0 ensures asymptotic
stability. In the sequel, we will present a constructive approach to compute α. To
this end, we assume that there exists Bk ∈ K∞ such that the optimal value functions
of PN (x0) satisfy

Vk(x) ≤ Bk(`∗(x)) for all x ∈ X and all k = 2, . . . , N (13)

1 A continuous function ρ : R+
0 → R+

0 is a K-function if ρ(0) = 0 and is strictly increasing. ρ is

a K∞-function if it is a K-function that is unbounded. A continuous function β : R+
0 ×R+

0 → R+
0

is a KL-function if for each r, limt→∞ β(r, t) = 0 and for each t ≥ 0, β(·, t) ∈ K∞. A continuous

function β : R+
0 ×R+

0 → R+
0 is a KL0-function if for each r, limt→∞ β(r, t) = 0 and for each t ≥ 0

we either have β(·, t) ∈ K∞ or β(·, t) ≡ 0 .
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The existence of the functions Bk can be concluded from asymptotic controllability
properties of the system, for details see [8, 13] and [7, Chapter 6].

The following proposition considers arbitrary values λn, n = 0, . . . , N − 1, and
ν and gives necessary conditions which hold if these values coincide with optimal
stage costs `(xu∗(n), u∗(n)) and optimal values VN (xu∗(m)), respectively.

Proposition 4.3. Assume (13) and consider N ≥ 1,m ∈ {1, . . . , N−1}, a sequence
λn > 0, n = 0, . . . , N − 1, a value ν > 0. Consider x0 ∈ X and assume that there
exists an optimal control function u∗(·) ∈ U for the finite horizon problem PN (x0)
with horizon length N , such that

λn = `(xu∗(n), u∗(n)), n = 0, . . . , N − 1

holds. Then
N−1∑
n=k

λn ≤ BN−k(λk), k = 0, . . . , N − 2 (14)

holds. If, furthermore,

ν = VN (xu∗(m))

holds, then

ν ≤
j−1∑
n=0

λn+m +BN−j(λj+m), j = 0, . . . , N −m− 1 (15)

holds.

Proof. See Proposition 4.1 and Remark 6.15 of [4].

By using the proposition, we arrive at the following theorem giving sufficient
conditions for suboptimality and stability of the multistep MPC feedback law µN,m
and an approach to compute the suboptimality index α.

Theorem 4.4. Let (13) hold and assume that the optimization problem

α := inf
λ0,...,λN−1,ν

∑N−1
n=0 λn − ν∑m−1
n=0 λn

subject to the constraints (14) and (15)
and λ0, . . . , λN−1, ν > 0

Pα

has an optimal value α ∈ (0, 1]. Then, the optimal value function VN of PN (x) and
the multistep MPC feedback law µN,m satisfy the assumptions of Proposition 4.2(i)
and, in particular, the inequality

αV∞(x) ≤ αJcl
∞(x, µN,m) ≤ VN (x)

holds for all x ∈ X. If, moreover, (10) holds then the closed loop is asymptotically
stable.

Proof. For the first assertion, see the proof of Corollary 4.5 of [4]. The second
assertion follows from Proposition 4.2(ii) setting α4 := BN .

Remark 4.5. Theorem 4.4 particularly shows inequality (11) for V = VN and
µ = µN,m, i.e.,

VN (xµN,m(m,x0)) ≤ VN (x0)− α
m−1∑
k=0

`(xµN,m(k, x0), µN,m(xµN,m(k, x0), k)) (16)
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for all x0 ∈ X. This inequality can be seen as a Lyapunov inequality and shows
that VN is an m-step Lyapunov function. Condition (13) may be relaxed if we only
intend to establish (16) for states x0 ∈ Y for a subset Y ⊆ X, cf. Remark 6.15(ii)
of [7].

The optimization problem Pα becomes a linear program if the Bk(r) are linear
in r. In this case, an explicit formula for α can be derived.

Theorem 4.6. Let BK , K = 2, . . . , N , be linear functions and define γK :=
BK(r)/r. Then the optimal value α of problem Pα for given optimization hori-
zon N , control horizon m satisfies satisfies α = 1 if and only if γm+1 ≤ 1 and

α ≥

(γm+1 − 1)

N∏
i=m+2

(γi − 1)

N∏
i=N−m+1

(γi − 1)(
N∏

i=m+1

γi − (γm+1 − 1)

N∏
i=m+2

(γi − 1)

)(
N∏

i=N−m+1

γi −
N∏

i=N−m+1

(γi − 1)

)
(17)

otherwise. If, moreover, the BK are of the form BK(r) :=
∑K−1
k=0 β(r, k) for some

β ∈ KL0 satisfying β(r, n + m) ≤ β(β(r, n),m) for all r ≥ 0, n,m ∈ N0, then
equality holds in (17).

Proof. See Theorem 5.4 and Remark 5.5 of [8].

An analysis of Formula (17) reveals that α → 1 as N → ∞ if there exists
γ̄ ∈ R with γk ≤ γ̄ [8, Corollary 6.1]. Hence, under this condition, stability and
performance arbitrarily close to the infinite horizon optimal performance can always
be achieved by choosing N sufficiently large. Moreover, the value delivered by
Formula (17) for m = 1 is always less or equal than the value for m ≥ 2 [8,
Proposition 7.3]. This means that if Theorem 4.6 guarantees asymptotic stability
(i.e., α > 0) of standard MPC m = 1 (Algorithm 3.1), then it also guarantees
stability of multistep MPC for arbitrary m = 2, . . . , N−1 (Algorithms 3.2 and 3.3).

To summarize, the reasoning in this section is as follows: Inequality (13) allows
us to formulate the optimization problem Pα. If this problem has a solution α > 0
then the assumptions of Proposition 4.2 are satisfied from which asymptotic stability
and performance estimates can be obtained. In case the BK in (13) are linear, an
explicit formula for the solution of Pα is provided by (17). This is the setting and
approach we are going to extend to perturbed systems in the remainder of this
paper.

5. Perturbations and Robust Stability. Mathematical models are approxima-
tions of real systems, hence a mismatch is inevitable between the predicted states
and those that are measured from the real plant. The results discussed in the
previous section are based on a nominal setting in which the mathematical model
coincides with the real system. Taking into account the presence of perturbations,
we consider the perturbed closed-loop model

x̃(k + 1) = f (x̃(k), µ(x̃(k), k)) + d(k) (18)

where d(k) ∈ X represents external perturbation and modeling errors.
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Remark 5.1. For brevity of exposition, we use in our analysis the perturbed closed-
loop model (18) instead of the more general model

x̃(k + 1) = f (x̃(k), µ(x̃(k) + e(k), k)) + d(k) (19)

where e(k) ∈ X represents state measurement errors. Stability and performance
statements for this model can be derived from respective statements for (18) using
the techniques from [7, Proof of Theorem 8.36] or [10, Proof of Proposition 1].

In the following discussion, we use the notation x̃µ(·, x0) to denote a solution of
(18) in order to distinguish it from the nominal trajectory xµ(·, x0). Furthermore,
we consider the set

Sd(x0) :=
{
x̃µ(·, x0) | ‖d(k)‖ ≤ d for all k ∈ N0

}
of all possible solutions starting in x0 with perturbations bounded by d.

Remark 5.2. In the remainder of this paper, we assume that for the initial values
x0, perturbation levels d and feedback laws µ under consideration, any trajectory
x̃µ(·, x0) ∈ Sd(x0) exists and satisfies x̃µ(k, x0) ∈ X for all k ∈ N. Techniques which
allow to rigorously ensure this property are discussed, e.g., in Sections 8.8–8.9 of [7]
and the references therein.

Asymptotic stability is in general too strong a property to hold under perturba-
tions. However, it is often still possible to prove suitable relaxed stability properties.
Here, we make use of the so-called semiglobal practical stability.

Definition 5.3. We say that x∗ is semi-globally practically asymptotically stable
with respect to perturbation d if there exists β ∈ KL such that the following property
holds: for each δ > 0 and ∆ > δ there exists d > 0 such that

‖x̃µ(k, x0)‖x∗ ≤ max{β(‖x0‖x∗ , k), δ} (20)

holds for all x0 ∈ X with ‖x0‖x∗ ≤ ∆, all x̃µ(·, x0) ∈ Sd(x0) and all k ∈ N0.

In words, this definition demands that for initial values not too far away from x∗
the system behaves like an asymptotically stable system provided the state is not
too close to x∗. Here, “not too far away” and “not too close” are quantified via ∆
and δ, respectively, and determine the admissible bound d on the perturbation. In
what follows, we will establish this property via the following definition and lemma.

Definition 5.4. Consider sets P̂ ⊂ Y ⊆ X. A point x∗ ∈ P̂ is called P̂ -practically
uniform asymptotically stable on Y if there exists β ∈ KL such that

‖x̃µ(k, x0)‖x∗ ≤ β(‖x0‖x∗ , k)

holds for all x0 ∈ Y , all x̃µ(·, x0) ∈ Sd(x0) and all k with x̃(k, x0) /∈ P̂ .

Lemma 5.5. The m-step MPC closed-loop system (7) is semi-globally practically
asymptotically stable with respect to d if for every δ > 0 and every ∆ > δ there

exists d > 0 and sets P̂ ⊂ Y ⊆ X with

B∆(x∗) ∩ X ⊆ Y and P̂ ⊆ Bδ(x∗)

such that for each solution x̃µ(·, x0) ∈ Sd(x0) the system is P̂ -practically uniform
asymptotically stable on Y in the sense of Definition 5.4.

Proof. The proof follows from the fact that according to Definition 5.4 for each

k ∈ N0 either ‖x̃µ(k, x0)‖x∗ ≤ β(‖x0‖x∗ , k) or x̃µ(k, x0) ∈ P̂ . Since the latter
implies ‖x̃µ(k, x0)‖x∗ ≤ δ, we observe the assertion.
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Now that we have defined the appropriate stability notion we can also define the

appropriate performance measure. To this end, note that the set P̂ in Definition
5.4 can be interpreted as the region of the state space in which the perturbations
become predominant. Hence, when considering the performance of such a solution,

it only makes sense to consider the trajectory until it first hits the set P̂ . Thus, we
need to truncate the infinite horizon closed loop cost Jcl

∞(x0, µ) from (4) as follows.

Definition 5.6. Consider a set P̂ ⊂ X. Then the performance associated to a

perturbed solution x̃µ(·, x0) of a closed-loop system outside P̂ is defined as

Jcl
P̂

(x̃µ(·, x0), µ) :=

k∗−1∑
k=0

` (x̃µ(k, x0), µ(x̃µ(k, x0), k)) , (21)

where k∗ ∈ N0 is minimal with x̃µ(k∗, x0) ∈ P̂ .

As a technical ingredient, we additionally need the following set properties.

Definition 5.7. Let m ∈ N. A set Y ⊆ X is said to be m-step forward invariant
for (18) with respect to d if for all x0 ∈ Y and all x̃µ(·, x0) ∈ Sd(x0), it holds that
x̃µ(pm, x0) ∈ Y for all p ∈ N.

For an m-step forward invariant set Y with respect to d we call Ŷ ⊇ Y an

intermediate set if x̃µ(k, x0) ∈ Ŷ for all k ∈ N and all x0 ∈ Y .

Based on these definitions, we have the following theorem extending Proposition
4.2 to the perturbed setting.

Theorem 5.8. (i) Consider a stage cost ` : X × U → R+
0 , an integer m ∈ N and

a function V : X → R+
0 . Let µ : X × N → U be an admissible m-step feedback law

of the form (6) or (8) and let Y ⊆ X and P ⊂ Y be m-step forward invariant for

(18) with respect to some d > 0. Let P̂ ⊇ P be an intermediate set for P . Assume
there exists α ∈ (0, 1] such that the relaxed dynamic programming inequality

V (x0) ≥ V (x̃µ(m,x0)) + α

m−1∑
k=0

`(x̃µ(k, x0), µ(x̃µ(k, x0), k)) (22)

holds for all x0 ∈ Y \P and all x̃µ(·, x0) ∈ Sd(x0). Then the suboptimality estimate

Jcl
P̂

(x̃µ(k, x0), µ) ≤ V (x0)/α (23)

holds for all x0 ∈ Y \ P̂ and all x̃µ(k, x0) ∈ Sd(x0).
(ii) If, moreover, (10) holds and there exists α3, α4 ∈ K∞ with α3(‖x‖x∗) ≤

V (x) ≤ α4(‖x‖x∗), then the closed-loop system (18) is P̂ -practically asymptotically
stable on Y in the sense of Definition 5.4.

Proof. (i) For proving (23), by a straightforward induction from (22) we obtain

α

pm−1∑
k=0

`(x̃µ(k, x0), (x̃µ(k, x0), k)) ≤ V (x0)− V (x̃µ(pm, x0)) ≤ V (x0)

for all p ∈ N for which x̃µ(k, x0) /∈ P for k = 0,m, 2m, . . . , (p− 1)m. In particular,

since P ⊆ P̂ , this inequality holds for the smallest p satisfying pm ≥ k∗ for k∗ from
Definition 5.6, implying

Jcl
P̂

(x̃µ(k, x0), µ) ≤
pm−1∑
k=0

`(x̃µ(k, x0), (x̃µ(k, x0), k)) ≤ V (x0)/α.
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(ii) For proving practical asymptotic stability, analogous to the first part of the
proof of [4, Theorem 5.2] we find a function ρ ∈ KL such that VN (xµ(pm, x0)) ≤
ρ(VN (x0), p) holds for all x0 ∈ Y and all p ∈ N with pm ≤ k∗ for k∗ from Definition
5.6. Now for k ∈ {1, . . . , k∗} which is not an integer multiple of m, (22) with
x̃µ(bkcm, x0) in place of x0 and nonnegativity of ` imply

`(x̃µ(k, x0)) ≤ VN (x̃µ(bkcm, x0))/α.

Since VN (x) ≤ α4 ◦ α−1
1 (`(x, u)) holds for all u, this yields

VN (x̃µ(k, x0)) ≤ α4 ◦ α−1
1 (VN (x̃µ(bkcm, x0))/α) ≤ α4 ◦ α−1

1 (ρ(V (x0), bkcm)/α).

From this we obtain

‖x̃µ(k, x0)‖x∗ ≤ α−1
3 ◦ α4 ◦ α−1

1 (ρ(α4(‖x0‖x∗), bkcm)/α).

This implies ‖x̃µ(k, x0)‖x∗ ≤ β(‖x0‖x∗ , k) for all k = 0, . . . , k∗ with

β(r, k) := α−1
3 ◦ α4 ◦ α−1

1 (ρ(α4(r), bkcm)/α) + e−k

which is easily extended to a KL-function by linear interpolation in its second

argument. Since x̃µ(k∗, x0) ∈ P implies that for all k ≥ k∗ we have x̃µ(k, x0) ∈ P̂ ,

this shows the claimed P̂ -practical asymptotic stability.

As already discussed at the end of Section 3, we expect the shrinking horizon up-
date mechanism of the updated MPC algorithm to enhance robustness of the closed
loop. Formally, this can be expressed via the parameter α, whose sign determines
asymptotic stability and whose absolute value (if positive) determines the degree of
suboptimality of the closed loop. Since larger values of α indicate both stability for
larger ranges of d and better performance for identical values of d, we would expect
that the updated MPC variant allows for more optimistic estimates for α.

For finite horizon problems, comparisons between the nominal open-loop control
applied to the perturbed system and the shrinking horizon RHC are examined in
[5]. There, potential improvements due to re-optimization are investigated and are
revealed to depend on the moduli of continuity of the optimization objective on the
one hand and of the optimal value function on the other hand. Particularly, in the
case where the system is open-loop unstable but controllable, the latter modulus of
continuity is much smaller, thus explaining the significant benefit of re-optimization.

Our analysis in this paper builds upon the framework of [5] and in the remainder
of this section we summarize and extend the results from this reference. We focus
our attention to the evolution described by the perturbed multistep MPC closed-
loop system

x̃µN,m(k + 1) = f(x̃µN,m(k), µN,m(x̃µN,m(bkcm), k)) + d(k) (24)

and the perturbed updated multistep MPC closed-loop system

x̃µ̂N,m(k + 1) = f(x̃µ̂N,m(k), µ̂N,m(x̃µ̂N,m(k), k)) + d(k) (25)

where perturbation occurs and re-optimization is performed. The feedback controls
µN,m and µ̂N,m are defined in (6) and (8), respectively.

In the following, we introduce an intuitive and rigorous notation for the tra-
jectories generated by (7), (24) and (25) reflecting perturbations and performed
re-optimizations during the first m steps of its evolution. As before, let N be the
optimization horizon and m be the control horizon.
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Notation 5.9. Let xj,p,r denote the state trajectory elements at time j ∈ {0, . . . , N}
that have gone through p ≤ j perturbations at time instants k = 1, . . . , p and along
which r ≤ p re-optimizations with shrinking horizons N − k have been performed
at time instants k = 1, . . . , r.

Remark 5.10. For j = 0, 1, . . . ,m and x0,0,0 = x0, the trajectories of the nominal
m-step, the perturbed m-step and the perturbed updated m-step MPC closed-loop
system as defined in (7), (24) and (25), respectively, can be expressed in the new
notation as

xµN,m(j, x0) = xj,0,0, x̃µN,m(j, x0) = xj,j,0 and x̃µ̂N,m(j, x0) = xj,j,j .

Notation 5.11. Let u∗j,p,r denote the optimal control sequence obtained by per-
forming a re-optimization with initial value xj,p,r−1 and optimization horizon N−j,
i.e., u∗j,p,r is obtained by solving PN−j(xj,p,r−1).

Since the initial value does not change when performing a re-optimization, the
identity xj,p,r−1 = xj,p,r holds. We also remark that for our analysis it is sufficient
to consider states of the form xj,p,r with r = 0, p, p− 1.

x0,0,0

x1,0,0

x2,0,0

x3,0,0

u∗0,0,0(0)

u∗0,0,0(1)

u∗0,0,0(2)

x1,1,0

x2,2,0
x3,3,0

u∗0,0,0(0)

u∗0,0,0(1)

u∗0,0,0(2)

x1,1,1

x2,2,1
x2,2,2

x3,3,2

x3,3,3

u∗1,1,1(0)
u∗2,2,2(0)

d(1)

d(2)

d(2)

d(3)

d(3)

Figure 1. Trajectories through time where perturbations occur
and re-optimizations are performed

Figure 1 illustrates the trajectories through time where perturbations occur and
re-optimizations are performed for the control horizon m = 3. At time t = 0,
by solving P3(x0,0,0), we obtain an open-loop optimal control sequence u∗0,0,0(j) =
u∗(j), j = 0, 1, 2 for which we can generate a nominal multistep trajectory xj,0,0, j =
0, . . . , 3 via (7) shown in black in the sketch. For an additive perturbation d(·),
the blue trajectory in Figure 1 indicates the perturbed multistep trajectory xj,j,0,
j = 0, . . . , 3 generated by (24). Here each transition (shown in solid blue) is com-
posed of the nominal transition f(xj,j,0, u

∗
0,0,0(j)) (blue dashed) followed by the

addition of the perturbation d(1), d(2), d(3) (red dashed). Finally, the trajectory
xj,j,j obtained by re-optimization in each step and generated by (25) with pertur-
bation d is shown piecewise in blue, green and orange, with the different colors
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indicating the different control sequences u∗j,j,j , j = 0, . . . , 2 whose first pieces are
used in the transition. Again, the nominal transition and the effect of the perturba-
tion d(j) are indicated as dashed lines and the resulting perturbed transitions from
xj,j,j to xj+1,j+1,j = xj+1,j+1,j+1 as solid lines.

Similar to how xj,p,r was defined, we define the following stage cost.

Notation 5.12. For time instants j ∈ {0, . . . , N − 1} and for j ≥ p, p ≥ r, r =
0, p, p− 1 we define

λj,p,r = `
(
xj,p,r, u

∗
r,r,r(j − r)

)
(26)

Observe that in order to determine the control needed to evaluate the stage cost
for the state xj,p,r, we go back to the last instant of the optimization, namely to
time r and use the optimal control sequence obtained there for horizon N − r and
initial value xr,r,r.

In order to simplify the numbering in the subsequent computations, we extend
(26) to give meaning to the notation when j < p, p ≥ r, r = 0, p, p− 1 through

λj,p,r :=

{
λj,j,j if r 6= 0
λj,j,0 if r = 0.

(27)

Remark 5.13. Although the previous discussion yields xj,j,j−1 = xj,j,j , we see
that λj,j,j−1 6= λj,j,j since λj,j,j−1 = `

(
xj,j,j−1, u

∗
j−1,j−1,j−1(1)

)
while λj,j,j =

`
(
xj,j,j , u

∗
j,j,j(0)

)
.

6. Properties resulting from perturbations and re-optimizations. Our goal
in this section is to provide a counterpart of Proposition 4.3 for the perturbed closed-
loop. To this end, using the notation introduced, we derive a number of inequalities
along the different trajectories.

6.1. Estimates involving VN (xm,m,0) and VN (xm,m,m). We derive in this sub-
section some implications of inequality (13) on trajectories involving occurrence of
perturbation and re-optimization. The following lemmas provide an upper bound
for VN (xm,m,0) and for VN (xm,m,m)

Lemma 6.1. Assume (13) and consider x0,0,0 = x ∈ X and an optimal control
u∗(·) ∈ UN for the finite horizon optimal control problem PN (x) with optimization
horizon N . Then for each m = 1, . . . , N − 1 and each j = 0, . . . , N −m− 1,

VN (xm,m,0) ≤
j−1∑
n=0

λn+m,m,0 +BN−j(λj+m,m,0) (28)

VN (xm,m,m) ≤
j−1∑
n=0

λn+m,m,m +BN−j(λj+m,m,m) (29)

Proof. To show (28), we take the trajectory element xm,m,0 whose evolution is
steered by the optimal control u∗(·) along the perturbed system (24) within m-
steps. We consider xj+m,m,0 for some j ∈ {m, . . . , N − 1}.

We define

ũ(n) =

{
u∗(n+m) n ∈ {0, . . . , j − 1}
ux̌(n− j) n ∈ {j, . . . , N − 1} (30)
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where ux̌(·) results from solving the optimization problem PN−j(x̌) with initial
value x̌ = xj+m,m,0 = xu∗(j +m,x) = xu∗(·+m)(j, xm,m,0). This yields

VN (xm,m,0) ≤ JN (xm,m,0, ũ(·))
= Jj(xm,m,0, u

∗(·+m)) + JN−j(xj+m,m,0, ux̌(·))

=

j−1∑
n=0

`(xn+m,m,0, u
∗(n+m)) +

N−j−1∑
n=0

`(xux̌(n, x̌), ux̌(n))

≤
j−1∑
n=0

λn+m,m,0 + VN−j(x̌) ≤
j−1∑
n=0

λn+m,m,0 +BN−j(`
∗(x̌))

=

j−1∑
n=0

λn+m,m,0 +BN−j(λj+m,m,0).

To show (29), we proceed analogously with x̌ = xj+m,m,m = xum,m,m(j, xm,m,m).

6.2. Estimates involving uniform continuity. The following are generaliza-
tions of Theorems 6 and 8 in [5] allowing an arbitrary time instant k ∈ {0, 1, . . . , N−
1} to be the reference point in place of k = 0. These results eventually provide a
basis for comparing, in the finite horizon OCP setting, the nominal system, the per-
turbed system controlled by the nominal optimal control and the perturbed system
under the shrinking horizon updated feedback controller.

Theorem 6.2. Given k ∈ {0, . . . , N − 1}. For any p ∈ {1, . . . , N − k − 1},∣∣∣∣∣∣
N−1∑
j=k

λj,k,0 −
N−1∑
j=k

λj,k+p,0

∣∣∣∣∣∣ ≤
p∑
j=1

|JN−k−j(xk+j,k+j−1,0, u
∗(·+ k + j)) (31)

−JN−k−j(xk+j,k+j,0, u
∗(·+ k + j))|

and ∣∣∣∣∣∣
N−1∑
j=k

λj,k,k −
N−1∑
j=k

λj,k+p,k+p

∣∣∣∣∣∣ ≤
p∑
j=1

|VN−k−j(xk+j,k+j−1,k+j−1) (32)

−VN−k−j(xk+j,k+j,k+j)|

Proof. The proof follows using the same technique as the proofs of Theorems 6 and
8 in [5] with the appropriate changes in the indices.

For the next corollary we need the following definition.

Definition 6.3. (i) The optimal value function VN is said to be uniformly con-
tinuous on a set A ⊆ X if there exists a K-function ωVN such that for all
x1, x2 ∈ A

|VN (x1)− VN (x2)| ≤ ωVN (‖x1 − x2‖) .
(ii) The cost functional JN is said to be uniformly continuous on A ⊆ X uniformly

in u ∈ UN if there exists a function ωJN ∈ K such that for all x1, x2 ∈ A and
all u ∈ UN

|JN (x1, u)− JN (x2, u)| ≤ ωJN (‖x1 − x2‖) .
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The functions ωVN and ωJN are called moduli of continuity. Analogous uniform
continuity definitions can be defined for f , ` and BK with the corresponding moduli
of continuity.

Following directly is a corollary that sizes up the differences among values asso-
ciated with the tails of the nominal trajectory, the tails of the perturbed trajectory
with nominal control and the tails of the perturbed trajectory with re-optimized
control.

Corollary 6.4. Let k ∈ {0, . . . , N − 1}. Suppose Vi, i = 1, . . . , N , is uniformly
continuous on a set A containing xj,k,0 and xj,j,0 for j = k, . . . , N −1 with modulus
of continuity ωVi . Suppose Ji, i = 1, . . . , N , is uniformly continuous on a set A
containing xj,k,k and xj,j,j for j = k, . . . , N − 1 uniformly in u on X with modulus
of continuity ωJi . Then∣∣∣∣∣∣

N−1∑
j=k

λj,k,0 −
N−1∑
j=k

λj,j,0

∣∣∣∣∣∣ ≤
N−k−1∑
j=1

ωJN−k−j (‖d(k + j)‖) (33)

and ∣∣∣∣∣∣
N−1∑
j=k

λj,k,k −
N−1∑
j=k

λj,j,j

∣∣∣∣∣∣ ≤
N−k−1∑
j=1

ωVN−k−j (‖d(k + j)‖) (34)

Proof. Straightforward from (32) and (31) with p = N − k − 1.

Note that on the right hand side of the estimates the perturbations that occur
before time step k do not appear since in both schemes they have cancelled each
other.

For the special case of k = 0, Corollary 6.4 is one of the central results of
[5]. It shows that on the finite horizon N , the performance difference between
the nominal and perturbed system controlled by the nominal optimal control is
determined by ωJN while the difference between the nominal and the shrinking
horizon updated feedback controller is determined by ωVN . Since for open loop
unstable and controllable systems ωVN is considerably smaller than ωJN [5, Section
V], this explains the significant benefit of updating in this case.

In the next lemma, we combine the preceding results to derive an upper bound
for the values corresponding to the tails of the perturbed trajectory with nominal
control and for the tails of the perturbed trajectory with re-optimized control.

Lemma 6.5. Let the assumptions of Corollary 6.4 hold. Suppose further BK ,
K = 1, . . . , N , is uniformly continuous on R+

0 with modulus of continuity ωBK .
Then for k = 0, . . . , N − 2 the inequalities

N−1∑
j=k

λj,j,0 ≤ BN−k(λk,k,0) + ωBN−k(λk,k,0 − λk,0,0) (35)

+ωJN−k(xk,k,0 − xk,0,0) +

N−k−1∑
j=1

ωJN−k−j (‖d(k + j)‖)

hold and
N−1∑
j=k

λj,j,j ≤ BN−k(λk,k,k) +

N−k−1∑
j=1

ωVN−k−j (‖d(k + j)‖) . (36)



16 LARS GRÜNE AND VRYAN GIL PALMA

Proof. Inequality (35) follows since

N−1∑
j=k

λj,j,0 ≤
N−1∑
j=k

λj,k,0 +

N−k−1∑
j=1

ωJN−k−j (‖d(k + j)‖)

= JN−k(xk,k,0, u
∗
0,0,0(k + ·)) +

N−k−1∑
j=1

ωJN−k−j (‖d(k + j)‖)

= JN−k(xk,0,0, u
∗
0,0,0(k + ·)) + ωJN−k(xk,k,0 − xk,0,0)

+

N−k−1∑
j=1

ωJN−k−j (‖d(k + j)‖)

≤ BN−k(`∗(xk,0,0)) + ωJN−k(xk,k,0 − xk,0,0)

+

N−k−1∑
j=1

ωJN−k−j (‖d(k + j)‖)

= BN−k(λk,0,0) + ωJN−k(xk,k,0 − xk,0,0)

+

N−k−1∑
j=1

ωJN−k−j (‖d(k + j)‖)

≤ BN−k(λk,k,0) + ωBN−k(λk,k,0 − λk,0,0)

+ ωJN−k(xk,k,0 − xk,0,0) +

N−k−1∑
j=1

ωJN−k−j (‖d(k + j)‖) .

To show (36) we compute

N−1∑
j=k

λj,j,j ≤
N−1∑
j=k

λj,k,k +

N−k−1∑
j=1

ωVN−k−j (‖d(k + j)‖)

= VN−k(xk,k,k) +

N−k−1∑
j=1

ωVN−k−j (‖d(k + j)‖)

= JN−k(xk,k,k, u
∗
k,k,k(·)) +

N−k−1∑
j=1

ωVN−k−j (‖d(k + j)‖)

= JN−k(xk,k,k, uxk,k,k(·)) +

N−k−1∑
j=1

ωVN−k−j (‖d(k + j)‖)

≤ BN−k(`∗(xk,k,k)) +

N−k−1∑
j=1

ωVN−k−j (‖d(k + j)‖)

= BN−k(λk,k,k) +

N−k−1∑
j=1

ωVN−k−j (‖d(k + j)‖) .

6.3. Counterpart of Proposition 4.3. By combining the results from this section
we can now state the following counterpart of Proposition 4.3. It yields necessary
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conditions which hold if these values λn coincide with either λn,n,0 or λn,n,n, n =
0, . . . , N − 1, and ν with either VN (xm,m,0) or VN (xm,m,m).

Corollary 6.6. Consider N ≥ 1,m ∈ {1, . . . , N − 1} and let the assumptions of
Lemmas 6.1 and 6.5 hold. Let x = x0,0,0 ∈ X and consider a perturbation sequence
d(·) where d(k) = 0 for k ≥ m generating the trajectories xµN,N−1

(n, x) = xn,n,0
and xµ̂N,N−1

(n, x) = xn,n,n, cf. Remark 5.10. Consider a sequence λn > 0, n =
0, . . . , N − 1 and a value ν > 0 such that either

(i) λn = λn,n,0, n = 0, . . . , N − 1 and ν = VN (xm,m,0) or

(ii) λn = λn,n,n, n = 0, . . . , N − 1 and ν = VN (xm,m,m) holds.

Then the inequalities

N−1∑
n=k

λn ≤ BN−k(λk) + ξk, k = 0, . . . , N − 2 (37)

ν ≤
j−1∑
n=0

λn+m +BN−j(λj+m), j = 0, . . . , N −m− 1 (38)

hold for

(i) ξk = ξpmult
k =

∑N−k−1
j=1 ωJN−k−j (‖d(k + j)‖)

+ ωBN−k(λk,k,0 − λk,0,0) + ωJN−k(xk,k,0 − xk,0,0)

(ii) ξk = ξupdk =
∑N−k−1
j=1 ωVN−k−j (‖d(k + j)‖) .

Proof. For case (i), inequality (38) follows immediately from (28) while (37) follows
directly from (35). For case (ii), (38) follows from (29), and (37) from (36).

Remark 6.7. We will later use Corollary 6.6 in order to establish inequality (22).
Since this inequality only depends on the perturbation values d(0), . . . , d(m − 1),
we could make the simplifying assumption d(k) = 0 for k ≥ m in Corollary 6.6.

7. The perturbed versions of Pα. Inequalities (14) and (15) comprise the con-
straints in the minimization problem Pα for finding the suboptimality index of the
nominal m-step MPC scheme with respect to the infinite horizon problem. For the
perturbed and the perturbed updated m-step MPC, the preceding corollary yields
analogous ’perturbed’ inequalities (37) and (38). In this section, we investigate how
much the values α resulting from the corresponding perturbed versions of Pα may
differ from the nominal case. To this end, we first state the three problems under
consideration. Here, for the subsequent analysis it turns out beneficial to include
perturbation terms in both inequalities (37) and (38).
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First, the optimization problem Pα corresponding to the nominal multistep MPC
can be written in terms of the latterly introduced notation as

αnmult := inf
λn,0,0,n=0,...,N−1,νnmult

∑N−1
n=0 λn,0,0 − νnmult∑m−1

n=0 λn,0,0

subject to

N−1∑
n=k

λn,0,0 ≤ BN−k(λk,0,0), k = 0, . . . , N − 2

νnmult ≤
j−1∑
n=0

λn+m,0,0 +BN−j(λj+m,0,0), j = 0, . . . , N −m− 1

m−1∑
n=0

λn,0,0 ≥ 0, λm,0,0, . . . , λN−1,0,0, ν
nmult ≥ 0.

Pnmult
α

For the perturbed multistep MPC without update, we define αpmult via

αpmult := inf
λn,n,0,n=0,...,N−1,νpmult

∑N−1
n=0 λn,n,0 − νpmult∑m−1

n=0 λn,n,0

subject to

N−1∑
n=k

λn,n,0 ≤ BN−k(λk,k,0) + ξpmult, k = 0, . . . , N − 2

νpmult ≤
j−1∑
n=0

λn+m,m,0 +BN−j(λj+m,m,0) + ξpmult, j = 0, . . . , N −m− 1

m−1∑
n=0

λn,n,0 ≥ ζ, λm,m,0, . . . , λN−1,N−1,0, ν
pmult ≥ 0

Ppmult
α

where

ξpmult := max
k∈{0,...,N−2}

ξpmult
k with ξpmult

k from Corollary 6.6(i) (39)

Finally, for the perturbed updated multistep MPC, we define αupd by

αupd := inf
λn,n,n,n=0,...,N−1,νupd

∑N−1
n=0 λn,n,n − νupd∑m−1

n=0 λn,n,n

subject to

N−1∑
n=k

λn,n,n ≤ BN−k(λk,k,k) + ξupd, k = 0, . . . , N − 2

νupd ≤
j−1∑
n=0

λn+m,m,m +BN−j(λj+m,m,m) + ξupd, j = 0, . . . , N −m− 1

m−1∑
n=0

λn,n,n ≥ ζ, λm,m,m, . . . , λN−1,N−1,N−1, ν
upd ≥ 0

Pupd
α

with

ξupd = max
k∈{0,...,N−2}

ξupd
k with ξupd

k from Corollary 6.6(ii) (40)
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The next lemma is the key technical step to show how αnmult, αpmult and αupd

are related. It provides an estimate for the difference between the solutions to two
abstract optimization problems of the type introduced above.

Lemma 7.1. Consider increasing functions Bik : R+
0 → R+

0 for k ∈ N and i = 1, 2
for which B2

k(r) is linear. Assume that these functions satisfy Bik(r) ≥ r for all
k ∈ N, r ≥ 0 and that there exists a real constant ξ > 0 with

B1
k(r) ≤ B2

k(r) + ξ (41)

For i = 1, 2 and a constant ζ ≥ 0 consider the optimization problems

αi := inf
λ0,...,λN−1,ν

∑N−1
n=0 λn − ν∑m−1
n=0 λn

subject to

N−1∑
n=k

λn ≤ BiN−k(λk), k = 0, . . . , N − 2 (42)

ν ≤
j−1∑
n=0

λn+m +BiN−j(λj+m), j = 0, . . . , N −m− 1 (43)

m−1∑
n=0

λn ≥ ζ, λ0, . . . , λN−1, ν > 0 (44)

Then the following holds.

(i) If ζ > 0, then the inequality α2 ≤ α1 +
B2
m+1(ξ) + ξ

ζ
holds.

(ii) If ζ = 0 and α2 ≥ 0, then for all values λ0, . . . , λN−1, ν satisfying (42)–(44)

for i = 1 the inequality ν ≤
∑N−1
n=0 λn +B2

m+1(ξ) + ξ holds.

Proof. (i) Fix ε > 0. Consider ε-optimal values λ1
0, . . . , λ

1
N−1, ν

1 satisfying the
constraints (42)–(44) for i = 1 and∑N−1

n=0 λ
1
n − ν1∑m−1

n=0 λ
1
n

≤ α1 + ε

Case 1: Suppose λ1
N−1 − ξ > 0. In the following we construct λ2

0, . . . , λ
2
N−1, ν

2

satisfying the constraints (42)–(44) for i = 2 and∑N−1
n=0 λ

2
n − ν2∑m−1

n=0 λ
2
n

≤ α1 + ε+
B2
m+1(ξ)

ζ

Set λ2
n := λ1

n, n = 0, . . . , N − 2, λ2
N−1 := λ1

N−1 − ξ. Set ν2 := max{0, ν1 −
B2
m+1(ξ)−ξ}. Notice that by this construction, λ2

0, . . . , λ
2
N−1, ν

2 satisfies constraint
(44). For k = 0, . . . , N − 2 this implies

N−1∑
n=k

λ2
n =

N−1∑
n=k

λ1
n − ξ ≤ B1

N−k(λ1
k)− ξ ≤ B2

N−k(λ1
k) + ξ − ξ = B2

N−k(λ2
k)

where the last equality holds since k ranges only from 0 to N −2. This implies (42)
for Bk = B2

k.
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Next observe that for j = 0, . . . , N −m− 2

ν1 ≤
j−1∑
n=0

λ1
n+m +B1

N−j(λ
1
j+m) ≤

j−1∑
n=0

λ1
n+m +B2

N−j(λ
1
j+m) + ξ

=

j−1∑
n=0

λ2
n+m +B2

N−j(λ
2
j+m) + ξ

holds. Further observe that for j = N −m− 1 we have

ν1 ≤
N−m−2∑
n=0

λ1
n+m +B1

m+1(λ1
N−1) ≤

N−m−2∑
n=0

λ1
n+m +B2

m+1(λ1
N−1) + ξ

=

N−m−2∑
n=0

λ2
n+m +B2

m+1(λ2
N−1 + ξ) + ξ

=

N−m−2∑
n=0

λ2
n+m +B2

m+1(λ2
N−1) +B2

m+1(ξ) + ξ

with the last equality due to linearity of B2
N−k. In case ν2 = 0 we get

ν2 ≤
j−1∑
n=0

λ2
n+m +B2

N−j(λ
2
j+m), = 0, . . . , N −m− 2

and in case ν2 = ν1 −B2
m+1(ξ)− ξ the inequalities

ν2 ≤
N−m−2∑
n=0

λ2
n+m +B2

m+1(λ2
N−1)

ν2 ≤ ν1 − ξ ≤
j−1∑
n=0

λ2
n+m +B2

N−j(λ
2
j+m), j = 0, . . . , N −m− 2

hold. Thus, for j = 0, . . . , N −m − 1, we have ν2 ≤
∑j−1
n=0 λ

2
n+m + B2

N−j(λ
2
j+m).

This implies (43) for Bk = B2
k.

Since
∑m−1
n=0 λ

1
n =

∑m−1
n=0 λ

2
n ≥ ζ > 0 and ξ > 0, the values λ2

m, . . . , λ
2
N−1, ν

2

satisfy all constraints (42)–(44) for i = 2 and we obtain

α2 ≤

N−1∑
n=0

λ2
n − ν2

m−1∑
n=0

λ2
n

=

N−1∑
n=0

λ1
n − ξ − ν2

m−1∑
n=0

λ2
n

≤

N−1∑
n=0

λ1
n − ξ − ν1 +B2

m+1(ξ) + ξ

m−1∑
n=0

λ1
n

≤ α1 + ε+
B2
m+1(ξ)

ζ
.
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Case 2: Now suppose λ1
N−1 − ξ ≤ 0. Let µ :=

∑N−m−2
n=0 λ1

n+m + B1
m+1(λ1

N−1).
Then

α1 + ε ≥
∑N−1
n=0 λ

1
n − ν1∑m−1

n=0 λ
1
n

≥
∑N−1
n=0 λ

1
n − µ∑m−1

n=0 λ
1
n

=

∑m−1
n=0 λ

1
n +

∑N−2
n=m λ

1
n + λ1

N−1 − µ∑m−1
n=0 λ

1
n

= 1 +
µ−B1

m+1(λ1
N−1) + λ1

N−1 − µ∑m−1
n=0 λ

1
n

= 1 +
B1
m+1(λ1

N−1)− λ1
N−1

−
∑m−1
n=0 λ

1
n

≥ 1 +
B1
m+1(λ1

N−1)− λ1
N−1

−ζ

≥ 1−
B1
m+1(λ1

N−1)

ζ
≥ 1−

B1
m+1(ξ)

ζ
≥ α2 −

B1
m+1(ξ)

ζ

≥ α2 −
B2
m+1(ξ) + ξ

ζ
.

Hence, in both cases we obtain α2 ≤ α1 + ε+
B2
m+1(ξ)+ξ

ζ which shows the assertion

since ε > 0 was arbitrary.
(ii) We proceed by contradiction. Assume there are values λ1

0, . . . , λ
1
N−1, ν

1 sat-

isfying (42)–(44) for i = 1 and ν1 >
∑N−1
n=0 λ

1
n + B2

m+1(ξ) + ξ. Then the same
construction as in (i) yields λ2

0, . . . , λ
2
N−1, ν

2 satisfying (42)–(44) for i = 2 and

α2 ≤

N−1∑
n=0

λ2
n − ν2

m−1∑
n=0

λ2
n

≤

N−1∑
n=0

λ1
n − ν1 +B2

m+1(ξ) + ξ

m−1∑
n=0

λ1
n

< 0

which contradicts the assumption α2 ≥ 0.

The following theorem finally applies Lemma 7.1 to the problems Pnmult
α , Ppmult

α

and Pupd
α .

Theorem 7.2. Consider problems Pnmult
α , Ppmult

α and Pupd
α , let the assumptions of

Theorem 4.4 hold and assume that the Bk, k ∈ N from Pnmult
α are linear functions.

Then

αpmult ≥ αnmult − Bm+1(ξpmult) + ξpmult

ζ

αupd ≥ αnmult − Bm+1(ξupd) + ξupd

ζ
.

Here, αnmult can be replaced by the right hand side of Equation (17).

Proof. We apply Lemma 7.1 setting α2 := αnmult, B2
k(r) := Bk(r), α1 := αpmult and

B1
k(r) := Bk(r)+ξpmult. This yields αnmult ≤ αpmult+

B2
m+1(ξpmult)+ξpmult

ζ . Similarly,

taking α2 := αnmult, B2
k(r) := Bk(r), α1 := αupd and B1

k(r) := Bk(r) + ξupd, we

have that αnmult ≤ αupd +
B2
m+1(ξupd)+ξupd

ζ . The fact that αnmult can be replaced

by the right hand side of (17) follows immediately from Theorem 4.6.
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The preceding theorem gives lower bounds for the values αpmult and αupd of
the perturbed problems in terms of the performance index αnmult of the nominal
problem. Recall that a larger value of the suboptimality index α indicates better
performance of the scheme. Thus, the theorem limits the performance loss to the

values Bm+1(ξpmult)+ξpmult

ζ and Bm+1(ξupd)+ξupd

ζ , respectively.

Remark 7.3. The constraint bound ζ is needed in order to prevent the quotient
B2
m+1(ξ)+ξ

ζ from blowing up. In the next section we relate this bound to the param-

eter δ > 0 in the semiglobal practical asymptotic stability property.

8. Asymptotic stability and performance. In this section we combine all of
the previous results in order to prove the ’perturbed’ counterpart to Theorem 4.4.
To this end, we start with a preparatory lemma.

Lemma 8.1. Let the assumptions of Corollary 6.6 hold.
(a) Consider a perturbation sequence d(·) with d(k) = 0 for all k ≥ m and a

trajectory x̃µN,m(·, x0) of (24) which corresponds to a perturbation sequence d̃(·)
with d̃(k) = d(k) for k = 0, . . . ,m− 1,

(i) Let αpmult be the solution of Ppmult
α for d(·) and some ζ > 0 and assume∑m−1

k=0 `(x̃µN,m(k, x0), µN,m(x̃µN,m(k, x0), k)) ≥ ζ. Then the inequality

VN (xµN,m(m,x0)) ≤ VN (x0)− α̃pmult
m−1∑
k=0

`(x̃µN,m(k, x0), µN,m(x̃µN,m(k, x0), k))

(45)
holds for

α̃pmult = αpmult − σ

ζ
where σ =

m−1∑
j=1

ωJN−j (‖d(j)‖) (46)

(ii) Assume that all values λ0, . . . , λN−1, ν
pmult satisfying the constraints from

Ppmult
α satisfy ν ≤

∑N−1
n=0 λn +Bm+1(ξpmult) + ξpmult. Then the inequality

VN (xµN,m(m,x0)) ≤ VN (x0) +Bm+1(ξpmult) + ξpmult + σ

holds for σ from (i).
(b) The analogous statements holds for the trajectories x̃µ̂N,m(·, x0) of (25) with

Ppmult
α , α̃pmult etc. replaced by Pupd

α , α̃upd etc. and σ =
∑N−1
j=1 ωVN−j (‖d(j)‖).

Proof. (a)(i) Consider the trajectory xj,j,0 corresponding to the perturbation d(·)
starting in x0,0,0 = x0, and the corresponding values λj,j,0. Note that for j =
0, . . . ,m the identities x̃µN,m(j, x0) = xj,j,0 and for j = 0, . . . ,m − 1 the identities
`(x̃µN,m(j, x0), µN,m(x̃µN,m(j, x0), j)) = λj,j,0 hold.

By Corollary 6.6(i), the values λn = λn,n,0 and ν = VN (xm,m,0) satisfy the
constraints of Ppmult

α . This implies

νpmult ≤
N−1∑
n=0

λn,n,0 − αpmult
m−1∑
n=0

λn,n,0
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from which using (33) we obtain

VN (xµN,m(m,x0)) ≤
N−1∑
n=0

λn,n,0 − αpmult
m−1∑
n=0

λn,n,0

≤
N−1∑
n=0

λn,0,0︸ ︷︷ ︸
=VN (x)

+

N−1∑
n=1

ωJN−n(‖d(n)‖)︸ ︷︷ ︸
=σ≤σ ζ∑m−1

n=0 λn,n,0

−αpmult
m−1∑
n=0

λn,n,0

≤ VN (x)− α̃pmult
m−1∑
n=0

λn,n,0,

i.e., the assertion, since d(m) = . . . , d(N − 1) = 0.
(a)(ii) Similar to (i) we obtain

VN (xµN,m(m,x0)) ≤
N−1∑
n=0

λn,n,0 +Bm+1(ξpmult) + ξpmult.

From this the assertion follows using the same estimates as in (i).
(b) Follows by analogous arguments using xj,j,j , λj,j,j , Corollary 6.6(ii) and (34).

The following theorem — together with the subsequent remark — constitutes
the main result of this paper. For its formulation we need one more property of f .

Definition 8.2. We say that f is uniformly bounded on each ball B∆(x∗) if for any
∆ > 0 the value sup‖x‖x∗≤∆,u∈U(x) ‖f(x, u)‖ is finite.

Theorem 8.3. (i) Let N ≥ 1 and consider the MPC Algorithm 3.2 with stage cost
` : X × U → R+

0 satisfying (10), yielding the multistep feedback law µN,m. Assume

that f is uniformly bounded on each ball B∆(x∗) and that JK , K = 1, . . . , N , f
and ` are uniformly continuous uniformly in u on each ball A = Bη(x∗) around
x∗ with their respective moduli of continuity ωηJK , ωηf and ωη` . Assume that (13)

holds with BK being linear and that the optimization problem Pnmult
α has an optimal

value αnmult ∈ (0, 1], implying that the nominal closed-loop system is asymptotically
stable.

Then the perturbed m-step closed-loop system (24) with feedback law µN,m is
semi-globally practically asymptotically stable on X with respect to d. The bound
d depending on ∆ and δ in Definition 5.3 can be chosen to satisfy the condition
α̃pmult > καnmult for arbitrary κ ∈ (0, 1), with α̃pmult from Lemma 8.1(a)(i). Here,
the moduli of continuity ωJN involved in the estimates for α̃pmult and αpmult are
chosen as ωJN = ωηJN with η depending on ∆. The value ζ in these estimates
depends on δ.

Moreover, for α̃pmult > 0 the performance estimate

Jcl
k∗(x̃µN,m(·, x), µN,m) ≤ VN (x)/α̃pmult.

holds for all x̃µN,m(·, x) ∈ Sd(x).
(ii) The same statements hold for the MPC Algorithm 3.3 and the corresponding

closed-loop system (25) when we replace the moduli of continuity ωηJK by ωηVK and

α̃pmult, αpmult by α̃upd, αupd, respectively.
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Proof. (i) Fix ∆ > δ > 0 and an arbitrary κ ∈ (0, 1). We prove the assertion
using Lemma 5.5 and Theorem 5.8. To this end, we will construct m-step forward

invariant sets Y and P with respect to d with intermediate set P̂ for P satisfying

B∆(x∗) ⊆ Y and P̂ ⊆ Bδ(x∗).

and such that (22) holds with V = VN , µ = µN,m and α := καnmult for all x0 ∈ Y \P .
First, observe that by taking α3 := α1 and α4 := BN ◦ α2 with α2 from (10) we

obtain

α3(‖x∗‖) ≤ `∗(x) ≤ VN (x) ≤ BN (`∗(x)) ≤ BN (α2(‖x‖x∗)) = α4(‖x‖x∗) (47)

Construction of Y : Fixing some arbitrary d̃ > 0, due to the uniform continuity
of f on balls around x∗, there exists η1 > 0 such that f(x, u) + d ∈ Bη1

(x∗) holds

for all x ∈ B∆(x∗) and all ‖d‖ ≤ d̃. Continuing inductively for i = 2, . . . , N with
ηi−1 in place of ∆, we find ηN such that any solution x̃µ(·, x0) ∈ Sd̃(x0) for any

x0 ∈ B∆(x∗) satisfies x̃µ(k, x0) ∈ BηN (x∗) for all k = 0, . . . , N .

We set L := α4(ηN ) which implies that for any x ∈ BηN (x∗)∩X we have VN (x) ≤
α4(‖x‖x∗) ≤ α4(ηN ) = L and thus

Y := V −1
N ([0, L]) ⊇ BηN (x∗) ∩ X ⊇ B∆(x∗) ∩ X.

Setting η = α−1
1 (L) implies Y ⊂ Bη(x∗). We let ωJK = ωηJK , K = 0, . . . , N ,

ωf = ωηf and ω` = ωη` denote the moduli of continuity of JK , f and `, respectively,

on A = Bη(x∗).

Construction of P and P̂ : We set p := α · α1 ◦ α−1
4 ◦ α3(δ) with α = καnmult

and define

P := V −1
N ([0, p]) ⊆ Bα−1

3 (p)(x∗).

In addition, we define P̂ := Bδ(x∗). For later use, we also define q := p/2, Q :=
V −1
N ([0, q]) ⊂ P and ζ = α1(α−1

4 (q)). Observe that if x /∈ Q, then α4(‖x‖x∗) ≥
VN (x) ≥ q which yields `∗(x) ≥ α1(‖x‖x∗) ≥ α1(α−1

4 (q)), i.e., the choice of ζ
ensures `∗(x) ≥ ζ.

Choice of d: We choose d ∈ (0,min{d̃, q}] maximal such that the two conditions

Bm+1(ξpmult) + ξpmult + σ ≤ q and α̃pmult ≥ καnmult

hold for ξpmult from Corollary 6.6(i), and σ and α̃pmult from Lemma 8.1(a)(i) with
ζ from above. Such d > 0 exists due to Lemma 8.1 and Theorem 7.2: Due to
the uniform continuity assumption on the JK , f and ` and the linearity of BK , all
terms in the definition of ξpmult in Corollary 6.6(i) vanish as d → 0. We note that
d depends on δ via q and ζ (which depends on δ via the construction of P ) and
on ∆ via the moduli of continuity ωJK , ωf and ω` (which depend on ∆ via the

construction of Y ). By Lemma 8.1, this choice of d ensures (45) and thus (22) with
V = VN , µ = µN,m and α = α̃pmult = καnmult > 0 for all x0 ∈ Y with `∗(x0) ≥ ζ.
By the choice of ζ, this includes all x0 ∈ Y \Q.
m-step forward invariance of Y : It is sufficient to show the implication

x0 ∈ Y ⇒ x̃µN,m(m,x0) ∈ Y for all x̃µN,m(·, x0) ∈ Sd(x0) since x̃µN,m(rm, x0) ∈ Y
for r ≥ 2 then follows by induction. For x0 ∈ Y \ Q, we know that (45) applies,
yielding VN (x̃µN,m(m,x0)) ≤ VN (x0) which implies x̃µN,m(m,x0) ∈ Y . For x0 ∈ Q,
we know that ‖x0‖x∗ ≤ δ < ∆. By construction of Y , all perturbed trajectories
starting in B∆(x∗) remain in Y for at least N steps, which implies x̃µN,m(m,x0) ∈ Y
since m < N .
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m-step forward invariance of P : Again, it is sufficient to show the implication
x0 ∈ P ⇒ x̃µN,m(m,x0) ∈ P for all x̃µN,m(·, x0) ∈ Sd(x0). We thus consider
arbitrary x0 ∈ P and x̃µN,m(·, x0) ∈ Sd(x0) and distinguish two cases:

Case 1: x0 /∈ Q. Then (45) applies, yielding VN (x̃µN,m(m,x0)) ≤ VN (x0) which
implies x̃µN,m(m,x0) ∈ P .

Case 2: x0 ∈ Q. Since αnmult > 0, Lemma 7.1(ii) applies and ensures that the
assumptions of Lemma 8.1(a)(ii) are satisfied. Then the choice of Q, q and d yields

VN (x̃µN,m(m,x0)) ≤ VN (x0) +Bm+1(ξpmult) + ξpmult + σ ≤ q + q = p

which again implies x̃µN,m(m,x0) ∈ P .

P̂ is an intermediate set: It remains to show that x̃µN,m(k, x0) ∈ P̂ = Bδ(x∗)
for all k ≥ 0 and x0 ∈ P . To this end, we use the inequality

VN (x̃µN,m(k, x0)) ≤ α4 ◦ α−1
1 (VN (x̃µN,m(bkcm, x0))/α)

derived in the proof of Theorem 5.8(ii). Since P is m-step forward invariant, we
know x̃µ(bkcm, x0) ∈ P and thus

VN (x̃µN,m(k, x0)) ≤ α4 ◦ α−1
1 (p/α)

which by (47) and choice of p implies

‖x̃µN,m(k, x0)‖x∗ ≤ α−1
3 ◦ α4 ◦ α−1

1 (p/α) = δ

and thus shows x̃µN,m(k, x0) ∈ P̂ .
(ii) The proof is completely identical to (i), observing that throughout the proof

of (i), we have only used properties of Algorithm 3.2 and system (24) which have
also been proven for Algorithm 3.3 and system (25).

Remark 8.4. The decisive difference between the cases (i) and (ii) in Theorem 8.3 is
that the error terms — which determine both the bound for d and the suboptimality
index α — depend on ωJK for Algorithm 3.2 and on ωVK for Algorithm 3.3. Since
typically the latter is smaller than the former, cf. [5, Theorem 3], with the difference
being significant, e.g., in case of open loop unstable and controllabe systems, cf.
[5, Section V], this explains and quantifies the better robustness properties of the
updated MPC scheme.

9. Numerical Example: An inverted pendulum. In order to illustrate our re-
sults, we consider a nonlinear inverted pendulum model consisting of a cart mounted
on a track where it can move and attached to it is a rigid pendulum that is able
to rotate freely. We use the different MPC controllers discussed in this paper to
swing up the pendulum to the unstable upright or inverted position. We consider
the model

ẋ1(t) = x2(t)

ẋ2(t) = −g
`

sin(x1(t))− kL
l

arctan(1000x2(t))x2
2(t)− u(t)

l
cos(x1(t))

−kR
(

4ax2(t)

1 + 4(ax2(t))2
+

2 arctan(bx2(t))

π

)
ẋ3(t) = x4(t)
ẋ4(t) = u(t)

where xi, i = 1, . . . , 4 represents pendulum angular displacement, angular velocity,
cart position and cart velocity, respectively, with gravitational constant g = 9.81,
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pendulum length l = 1.25 and friction parameters kL = 0.007 and kR = 0.197. In
order to convert the continuous time system to a discrete time model (1) we sample
it with zero order hold and sampling period T = 0.2. To stabilize the upright
position x∗ = ((2k + 1)π, 0, 0, 0), k ∈ N, we consider the stage cost

`(x(i), u(i)) =

∫ ti+1

ti

10−4u(t)2 +
(
3.51 sin(x1(t)− π)2 + 4.82 sin(x1(t)− π)x2(t)

+ 2.31x2(t)2 + 0.1
(
(1− cos(x1(t)− π)) · (1 + cos(x2(t))2)

)2
+ 0.01x3(t)2 + 0.1x4(t)2

)2
dt

where ti = iT , leading to a cost functional of JN (x0, u) =
∑N−1
i=0 `(x(i), u(i)).

We aim to compare simulations resulting from the multistep, updated multistep
and sensitivity-based multistep feedback controllers both on nominal and perturbed
setting. We set the length of the optimization horizon toN = 15, set the initial value
x0 = (−π−0.1, 0,−0.1, 0) and for the perturbed system (18) we use a fixed randomly
generated perturbation sequence of the form d(k) = [0, 0, d3(k), 0]>, k ∈ N, (i.e.,
perturbations occur on the cart position x3 and are identical for each simulation)
with values in the interval [−d3, 0] for d3 = 0.05.

Figure 2 illustrates that the trajectories for m = 1 where the 1-step MPC scheme
(shown in blue) renders the nominal system asymptotically stable at (−π, 0, 0, 0)
while, as expected, the 1-step perturbed solution (cyan) is only practically asymp-
totically stable, i.e., only converges to a neighborhood of x∗. We remark that for
m = 1, the trajectories generated by (24) and (25) coincide, hence only the former
is shown in the figure. For m = 7, trajectories resulting from the nominal 7-step
(blue), perturbed 7-step (red), and perturbed updated 7-step (green) are plotted
in Figure 3. The larger m is chosen, the longer the multistep controller does not
counteract the effect of the perturbation preventing the trajectory to arrive closer
to the equilibrium which is exactly what we see in plots (shown in red). Improve-
ment is manifested by applying the updates to the multistep scheme allowing the
trajectory to shoot towards the equilibrium against the perturbations (shown in
green). In addition, the black lines show the solution for the updated 7-step scheme
where the shrinking horizon optimizations were replaced by sensitivity updates, cf.
[13]. We note that this solution is barely distinguishable from the updated 7-step
scheme (green), thus showing that the analysis in this paper also provides valuable
information for the sensitivity updated scheme. Finally, the figure also illustrates
how all the schemes mentioned compare to the 1-step scheme — the most robust
scheme (shown in cyan).

Table 1 shows the comparison of time requirements in CPU time among the
multistep and the updated multistep schemes for increasing multisteps m. To al-
low comparison, time instants 0 to 100 are considered for which for each scheme,
floor(100/m) optimizations with full horizon N are performed and the times
needed are recorded. As expected, since neither a control has to be computed
nor an optimization has to be performed for the multistep scheme, the larger m is
chosen, the larger the savings in time becomes. For each m, due to the sequence of
optimization with shrinking horizon that has to be performed, the corresponding
updated scheme requires more time which one can easily notice in the table. Al-
though optimization for each time step is still required for the updated multistep
scheme, savings in time is nevertheless achieved in contrast to the 1-step MPC —
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Figure 2. State trajectories driven by the 1-step MPC scheme for
nominal (blue) and perturbed system (cyan)
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Figure 3. State trajectories driven by the 7-step MPC scheme for
nominal system (blue), the 1-step (cyan), 7-step (red), updated 7-
step (green) and sensitivity-based 7-step (black) MPC schemes for
the perturbed system
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the most expensive scheme — which performs optimization with full horizon N at
each time instant.

Table 1. Comparison of time requirements in CPU time

m multistep updated

1 11.0447 11.0967
2 5.6484 10.4687
3 3.6762 10.3646
4 2.5522 10.1046
5 2.1921 9.3766
6 1.8241 8.6125
7 1.5801 7.7765
8 1.2321 7.7845
9 1.0881 7.2405
10 1.0641 6.5404
11 0.9521 6.1124
12 0.8601 5.7884
13 0.8681 5.2243

Finally, Table 2 presents performance indices α of the schemes which are com-
puted from the generated trajectories using the approach presented in [6]. We vary
m and list the values of α for the first three iterations of each scheme. In our simu-
lation, the values of α for the nominal multistep scheme indicates that the feedback
is ’close’ to being infinite horizon optimal having values α > 0.9. Furthermore,
along increasing m, the α values increase, peak and then deteriorate exemplifying
the parabolic profile of the α’s of the multistep MPC scheme reported in [8]. For the
perturbed system with d3 = 0.05, for the multistep scheme, α values are observably
lower and even worsen on the second and third iteration where negative values are

also seen. These negative values indicate that the region P̂ of practical asymptotic
stability has been reached, cf. [6, Section 4]. Most importantly, Table 2 shows a
noticeable improvement to the values of α for the updated multistep brought about
by the re-optimization that counteracts the effect of the perturbation as seen in the
last three columns of the table. Weighing in all benefits after examining the time
requirements and suboptimality estimates, by updating the multistep feedback for
the perturbed system, we clearly gain time savings compared to the classical MPC
scheme, and improve robustness in comparison with the multistep feedback scheme.

Table 2. Suboptimality index α of the schemes for various m and iterations

nominal multistep perturbed multistep updated multistep
m 0 2m 3m 0 2m 3m 0 2m 3m

1 0.9908 0.9917 0.9935 0.8667 0.8699 0.6032 0.8667 0.8699 0.6032
2 0.9911 0.9937 0.9950 0.8678 0.6322 0.8479 0.8681 0.6383 0.8538
3 0.9915 0.9944 0.9948 0.7936 0.7713 0.5857 0.7955 0.7810 0.6203
4 0.9917 0.9942 0.9937 0.7672 0.6870 0.5282 0.7729 0.7139 0.5647
5 0.9916 0.9933 0.9916 0.7632 0.6898 0.4171 0.7734 0.7307 0.4882
6 0.9913 0.9916 0.9880 0.7724 0.3915 0.3810 0.7868 0.4974 0.4037
7 0.9908 0.9887 0.9829 0.7404 0.4850 -0.0954 0.7629 0.5695 -0.0251
8 0.9902 0.9843 0.9755 0.7103 0.4233 -0.0370 0.7414 0.4981 0.0228
9 0.9895 0.9778 0.9662 0.7066 0.1941 -0.0328 0.7423 0.2845 -0.0129
10 0.9888 0.9698 0.9561 0.6988 0.0840 -0.2314 0.7379 0.1718 -0.2125
11 0.9883 0.9622 0.9461 0.6477 0.1414 -0.0467 0.6953 0.1394 0.0009
12 0.9880 0.9576 0.9400 0.6183 0.1227 -0.1213 0.6688 0.0776 -0.0356
13 0.9879 0.9584 0.9372 0.6133 -0.0139 -0.1130 0.6609 -0.0474 -0.0468
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10. Conclusion and Outlook. Estimates and statements analogous to those of
the nominal multistep MPC closed-loop system can be obtained for the perturbed
closed-loop setting. The approach comprises showing that a relaxed Lyapunov
inequality holds for the multistep feedback along perturbed trajectories. Assuming
a suboptimality performance index for the nominal setting, performance estimates
for the perturbed closed-loop with nominal controller and with updated controller
are derived. From the respective performance indices, practical stability properties
of both schemes are proved. The enhanced robustness of Algorithm 3.3 induced
by the shrinking horizon updates becomes visible in our estimates via the moduli
of continuity ωVN , which are often considerably smaller than their counterparts
ωJN appearing in the respective estimates for the non-updated Algorithm 3.2. For
future work, this result will be applied to the sensitivity-based feedback MPC where
the sensitivity-based updates can be viewed as a less costly approximation of the
updates of the updated multistep feedback MPC.
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