A VERTEX-CENTERED LINEARITY-PRESERVING DISCRETIZATION OF DIFFUSION PROBLEMS ON POLYGONAL MESHES

Abstract : This paper introduces a vertex-centered linearity-preserving finite volume scheme for the heterogeneous anisotropic diffusion equations on general polygonal meshes. The unknowns of this scheme are purely the values at the mesh vertices, and no auxiliary unknowns are utilized. The scheme is locally conservative with respect to the dual mesh, captures exactly the linear solutions, leads to a symmetric positive definite matrix, and yields a nine-point stencil on structured quadrilateral meshes. The coercivity of the scheme is rigorously analyzed on arbitrary mesh size under some weak geometry assumptions. Also the relation with the finite volume element method is discussed. Finally some numerical tests show the optimal convergence rates for the discrete solution and flux on various mesh types and for various diffusion tensors.
Type de document :
Pré-publication, Document de travail
2015
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01098507
Contributeur : Zhiming Gao <>
Soumis le : jeudi 8 janvier 2015 - 01:42:25
Dernière modification le : jeudi 15 janvier 2015 - 01:04:28
Document(s) archivé(s) le : jeudi 9 avril 2015 - 10:11:43

Fichier

VLPS2014siam.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01098507, version 1

Collections

Citation

Jiming Wu, Zhiming Gao, Zhihuan Dai. A VERTEX-CENTERED LINEARITY-PRESERVING DISCRETIZATION OF DIFFUSION PROBLEMS ON POLYGONAL MESHES. 2015. 〈hal-01098507〉

Partager

Métriques

Consultations de la notice

80

Téléchargements de fichiers

124